A level set method for fluid displacement in realistic porous media

Maša Prodanović

Center for Petroleum and Geosystems Engineering
University of Texas at Austin

CMWR 2008, San Francisco, CA
July 10, 2008
Joint work with

Steven Bryant, The University of Texas at Austin

Acknowledging support

- US Department of Energy, grant "Mechanisms leading to coexistence of gas and hydrates in ocean sediments"
- US Department of Agriculture, grant "Quantifying the mechanisms of pathogen retention in unsaturated soils"

Computational resources

- Texas Advanced Computing Center (TACC)
Outline

- Introduction
- Modeling
 - Level Set Method
 - PQS Algorithm (Prodanović/Bryant)
 - Contact angle modeling
- Results
- Conclusions
Pore scale immiscible fluid displacement

- Fluid-fluid interface (meniscus) at equilibrium with constant capillary pressure P_c and interfacial tension σ satisfies Young-Laplace equation

$$P_c = P_{nw} - P_w = \sigma \kappa$$

- We assume quasi-static displacement and thus at each stage interfaces are constant mean curvature (κ) surfaces

Fig.1. Contact angle at equilibrium satisfies

$$\sigma_{AB} \cos \theta = \sigma_{SA} - \sigma_{SB}$$
Statement of the problem

- **Goal**
 - Accurately model capillarity dominated fluid displacement in porous media

- **What is the big deal?**
 - Calculating constant curvature surfaces (in irregular pore space)
 - Accounting for the splitting and merging of the interface within the pore space

- **What do we do?**
 - Adapt the level set method for quasi-static fluid displacement
Introduction

Modeling
- Level Set Method
- PQS Algorithm (Prodanović/Bryant)
- Coupling with Sediment Mechanics

Results

Conclusions
Level Set Method

- Osher & Sethian, ’88.
- The moving interface is imbedded as the zero level set of function ϕ; the governing PDE is
 \[\phi_t + F |\nabla \phi| = 0, \quad \text{given} \quad \phi(\vec{x}, 0) \]

- F is particle speed in the normal direction
- The method works in any dimension and handles topological changes naturally
- Sample speed F
 \[F(x, t) = a_0 - b_0 \kappa(x, t) \]
Progressive quasi-static algorithm

- **Drainage** starts with a planar front exposed to a **slightly compressible curvature model** until steady state is reached:
 \[F(\vec{x}, t) = a_0 \exp[f(1 - \frac{V(t)}{V_m})] - b_0 \kappa(\vec{x}, t) \]

- Further, we increment curvature and run a **prescribed curvature model**
 \[F(x, t) = a_0 - b_0 \kappa(x, t) = a_0 - b_0 \nabla \cdot \frac{\nabla \phi}{|\nabla \phi|} \]

- **Imbibition** starts from drainage endpoint and decrements curvature

- Zero contact angle: **wall BC** \(\phi(\vec{x}, t) \leq \psi(\vec{x}) \)

- **Contact angle model**
 \[F(\vec{x}, t) = aH(-\psi) - \nabla \cdot (b(\psi) \frac{\nabla \phi}{|\nabla \phi|}) \]

 \[b(\psi) = \begin{cases}
 |\sigma_{SA} - \sigma_{SB}|, & \text{if } \psi \geq 0 \\
 \sigma_{AB}, & \text{if } \psi < 0.
 \end{cases} \]

\[\sigma_{AB} \cos \theta = |\sigma_{SA} - \sigma_{SB}| \]
Motivation & Introduction

Modeling
- Level Set Method
- PQS Algorithm (Prodanović/Bryant)
- Coupling with Sediment Mechanics

Results
- Zero contact angle
- Non-zero contact angle

Conclusions
2D Drainage and Imbibition

Simulation steps (alternating red and green colors) in drainage (controlled by throats) and imbibition (controlled by pores). All computed within 2% rel.abs.err.
Fractured Berea Sandstone

Fracture image courtesy of Dr. Zuleima Karpyn, PSU

Comparison with Experiment

Aperture field

Experiment, $S_w=0.35$

Simulation $S_w=0.28$

asperities

oil
Drainage in Fractured Berea

interfac. tension oil-water
σ=41.2 mN/m

P_2=157 Pa
P_{13}=607 Pa
W fluid
Imbibition in Fractured Berea

- $P_9 = 813\ \text{Pa}$
- $P_{25} = 153\ \text{Pa}$
- $P_{26} = 113\ \text{Pa}$
- $P_{28} = 30\ \text{Pa}$
Pc-Sw curve for Fractured Berea
Fractured Sphere Pack

Pore-grain surface sphere radii $R=1.0$
Image size 160^3 ($dx=0.1$)

NW phase surface in fracture (drainage beginning)
Drainage and Imbibition

Drainage, \(C=4.9 \)

Imbibition, \(C=0.24 \)

Imbibition – rotated
\(C=2.15 \)

Trapped NW phase

Drainage movie

Imbibition movie
Curvature – saturation curves
Throat in 2D: $\theta=60$

Some overlap with solid allowed in order to form contact angle

The last stable meniscus shown in purple: not at geometrical throat!
Fracture in 2D: $\theta=30$

Drainage

Imbibition

- LSMPQS steps shown in alternate red and green colors
Fracture in 2D: $\theta=80$

- Drainage
- Imbibition: does not imbibe at a positive curvature!

- LSMPQS steps shown in alternate red and green colors
Fracture 2D: drainage curves
Fracture in 2D: imbibition curves
Fractional wettability: $\theta = 10$ and 80

Simulation: $C = 4.16$

Analytic solution: 4.23

- Last stable meniscus shown in purple
Mixed wettability: $\theta=60$ and 30

$C=5.73$
Throat3D: $\theta=30$

- Throat is bounded by 4 rods in rhomboidal arrangement
- Note: Movie (click button!) shows only non-wet phase surface colored red (meniscus) and gray (solid contact)

C=7.5, last stable main meniscus

C=7.6, only pendular rings remain
Conclusions

- Drainage/imbibition modeling is
 - Geometrically correct
 - Robust with respect to geometry
- We identify (independently confirm)
 - Haines jumps at drainage
 - Melrose criterion at imbibition
- We can easily obtain Pc-Sw curves, fluid configuration details (volumes, areas)
- Capillarity has an important effect on flow in rough wall fractures with contact points – we find W phase blobs around contacts and hysteresis of C-Sw curves
- Modeling (fractional & mixed) wettability possible
Thank you!

More Info:
http://www.ices.utexas.edu/~masha
masha@ices.utexas.edu