1. A particle is moving in a straight line with an acceleration $a(t) = a(t - t_0)$, where a is a positive constant and $t_0 > 0$ is a specified instant. At the time t_0, the corresponding position and velocity are x_0 and v_0, respectively. Derive the formulas for position $x(t)$ and velocity $v(t)$ at any time t (5 points)

$$
\begin{align*}
\ddot{x} &= a \frac{(t - t_0)}{x_0} \\
\dot{x} &= a \frac{(t - t_0)}{x_0} + c \\
v(t_0) &= v_0 \\
\Rightarrow \quad c &= v_0
\end{align*}
$$

2. At point $r = 1$m, $\theta = \pi/6$, the polar components of a velocity vector for a particle are $v_r = 0, v_\theta = \dot{\theta}$. Calculate the Cartesian components of the velocity vector. (5 points)

$$
\begin{align*}
\vec{v} &= v_r \hat{e}_r + v_\theta \hat{e}_\theta \\
&= \dot{\theta} \hat{e}_\theta \\
&= (-0.5, 0.866) \quad \left[\frac{m}{s} \right]
\end{align*}
$$
3. Can a particle moving on a curvilinear path have a zero acceleration (vector)? Explain. (5 points)

\[\ddot{a} = \alpha_t \varepsilon_t + a_n \varepsilon_n \]
\[a_n = \frac{v^2}{s} \]

Particle is moving \[\Rightarrow v \neq 0 \]
Path is curved \[\Rightarrow s \neq \infty \] \[\Rightarrow a_n \neq 0 \]

No !

4. Derive the formulas for acceleration vector components \(a_r \) and \(a_\theta \) in the polar system of coordinates (5 points)

\[\varepsilon_r = (\cos \theta, \sin \theta, 0) \quad \frac{d \varepsilon_r}{d \theta} = (-\sin \theta, \cos \theta, 0) = -\varepsilon_\theta \]
\[\varepsilon_\theta = (-\sin \theta, \cos \theta, 0) \quad \frac{d \varepsilon_\theta}{d \theta} = (-\cos \theta, -\sin \theta, 0) = -\varepsilon_r \]

\[\ddot{r} = \dot{r} \varepsilon_r + r \frac{d \varepsilon_r}{d \theta} + \ddot{\theta} \varepsilon_\theta + r \dot{\theta} \varepsilon_r = \frac{\dot{r} \varepsilon_r}{v_r} + \frac{\dot{\theta} e_\theta}{v_\theta} \]
\[\ddot{r} = \frac{(\ddot{r} - \dot{r} \ddot{\theta}) \varepsilon_r + (\ddot{\theta} + 2 \dot{\theta} \dot{r}) \varepsilon_\theta}{\dot{r}} \]

\[a_r = \frac{\dot{r} \varepsilon_r + \ddot{r} \varepsilon_r + \dot{r} \dot{\theta} \varepsilon_\theta + r \ddot{\theta} \varepsilon_\theta}{\dot{r}} \]

5. A particle moves along a parabola \(y = x^2 \) with a constant speed \(v \). Determine the Cartesian components of the velocity vector as a function of coordinate \(x \). (5 points)

\[y = x^2 \quad \Rightarrow \quad \dot{y} = 2x \dot{x} \]
\[x^2 + \dot{y}^2 = v^2 \quad \Rightarrow \quad \dot{x}^2 + (2x \dot{x})^2 = x^2 (1 + 4x^2) = v^2 \]

\[\begin{cases} \dot{x} = \pm \frac{v}{\sqrt{1 + 4x^2}} \\ \dot{y} = \pm \frac{2xv}{\sqrt{1 + 4x^2}} \end{cases} \]
6. A projectile is launched at 10 m/s from a sloping surface. The angle $\alpha = 80^\circ$. Determine the range R. (25 points)

\[x(t) = 10 \cos 50^\circ \cdot t = 6.428 \, t \, [m] \]
\[y(t) = -\frac{gt^2}{2} + V_{oy} \, t \]
\[= -4.905 \, t^2 + 10 \sin 50^\circ \, t \]
\[= -4.905 \, t^2 + 7.66 \, t \]

At some time t:
\[\frac{y}{x} = -\tan 30^\circ = -0.5774 \]
\[-4.905 \, t^2 + 7.66 \, t = -0.5774 \left(6.428 \, t \right) \]
\[= -3.711 \, t \]
\[-4.905 \, t = -3.711 - 7.66 = -11.37 \]
\[t = 2.138 [s] \]

\[x(t) = 14.90 \, [m] \]
\[y(t) = -8.60 \, [m] \]

Check: $\frac{y}{x} = -0.5774 \checkmark$

\[R = \sqrt{x^2 + y^2} = 17.20 \, [m] \]
at \(s = 120 \text{ ft} \), the car is on the first circle, so \(s = r = 120 \text{[ft]} \)

\[
a_n = \frac{v^2}{s} = \frac{5429.2}{120} = 45.24 \text{ [ft/s]}
\]

\[
a = \sqrt{a_n^2 + a_h^2} = 45.9 \text{ [ft/s]}
\]

(b) \(v^2 = 59.3^2 + 2 \cdot 7.97 \cdot 160 = 6067 \text{ [ft}^2/\text{s}^2] \)

at \(s = 160 \text{ ft} \), the car is on the second circle, so \(s = r = 100 \text{[ft]} \)

\[
a_n = \frac{v^2}{s} = \frac{6067}{100} = 60.7 \text{ [ft/s]}
\]

\[
a = \sqrt{a_n^2 + a_h^2} = 61.2 \text{ [ft/s]}
\]
7. The car increases its speed at a constant rate from 40 mi/h at A to 60 mi/h at B. Determine the magnitude of its acceleration when it has traveled along the road a distance (a) 120 ft from A, and (b) 160 ft from A. (25 points)

\[a_t = \frac{dv}{ds} = \frac{dv}{ds} \cdot \frac{ds}{dt} = \frac{dv}{dt} \]

\[a_t \cdot ds = v \cdot dv \]

\[S_8 = 80 + 120 \frac{30}{180} \pi + 100 \frac{30}{180} \pi + 80 = 275.2 \text{ [ft]} \]

\[40 \text{ mi/h} = \frac{40 \times 5280}{3600} = 59.3 \text{ [ft/s]} \]

\[60 \text{ mi/h} = \frac{88.8}{59.3} \]

\[1 \text{ mi} = 1600 \text{ m} \times \frac{1 \text{ ft}}{0.305} = 5333 \text{ [ft]} \]

\[\int_{a_1}^{a_2} dx = \int_{0}^{1} v \cdot dv \]

\[a_t \cdot 275.2 = \frac{1}{2} \left(88.8^2 - 59.3^2 \right) \]

\[a_t = 7.97 \text{ [ft/s}^2] \]

(a) In an arbitrary \(S \), \(\int_{a_1}^{a_2} a_t \cdot ds = \int_{v_1}^{v} v \cdot dv \)

\[a_t \cdot S = \frac{1}{2} \left(v^2 - v_1^2 \right) \]

So:

\[v^2 = v_1^2 + 2a_t \cdot S \]

\[v^2 = 59.3^2 + 2 \cdot 7.97 \cdot 120 = 5429.2 \text{ [ft}^2] \]
8. The hydraulic actuator moves the pin P upward with constant velocity $v = 2j$ (m/s). Determine the acceleration of the pin in terms of polar coordinates and the angular acceleration $\ddot{\theta}$ of the slotted bar when $\theta = 35^\circ$. (25 points)

\[v_T = v \sin \theta = 1.147 \left[\frac{m}{s} \right] \]
\[v_\theta = v \cos \theta = 1.638 \left[\frac{m}{s} \right] \]

\[a_T = \omega \dot{\theta} = 0 \]

at $\theta = 35^\circ$ \[r = \frac{v}{\omega} = 2.442 \left[m \right] \]

\[v_T = r \dot{r} = 1.147 \Rightarrow \dot{r} = 1.147 \left[\frac{m}{s} \right] \]
\[v_\theta = r \dot{\theta} = 1.638 \Rightarrow \dot{\theta} = 0.67 \left[\frac{rad}{s} \right] \]

\[a_\theta = r \ddot{\theta} + 2 \dot{r} \dot{\theta} = 0 \]

\[\ddot{\theta} = - \frac{2 \dot{r} \dot{\theta}}{r} = - \frac{2 \cdot 1.147 \cdot 0.67}{2.442} = - 0.63 \left[\frac{rad}{s^2} \right] \]
Switch to the cartesian components

\[v = v_r \hat{r} + v_\theta \hat{\theta} \]

\[= v_r (\cos \theta \hat{x} + \sin \theta \hat{y}) + v_\theta (-\sin \theta \hat{x} + \cos \theta \hat{y}) \]

\[= \left(\frac{v_r \cos \theta - v_\theta \sin \theta}{v_x} \right) \hat{x} + \left(\frac{v_r \sin \theta + v_\theta \cos \theta}{v_y} \right) \hat{y} \]

\[\begin{align*}
V_x &= -5.76 \quad [\text{m/s}] \\
V_y &= 3.50 \quad [\text{m/s}]
\end{align*} \]

Verifications:

- Check for \(r \) (cosine law)
 \[0.4^2 = 0.532^2 + 0.2^2 - 2 \cdot 0.532 \cdot 0.2 \cdot \cos 40^\circ \]
 \[0.16 = 0.16 \quad \text{OK} \]

- Check for speed
 \[v_r^2 + v_\theta^2 = v_x^2 + v_y^2 \]
 \[6.38^2 + 2.16^2 = 5.76^2 + 3.50^2 \]
 \[45.42 = 45.42 \quad \text{OK} \]
1. Derive the equation of motion for the center of mass of an arbitrary system of particles. (5 points)

\[\sum m_i \ddot{r}_i = \sum F_i + \sum R_i \]

2. Define an inertial frame of reference. (5 points)

Any system of coordinates in which the Newton laws of motion hold.
3. If string A is cut, does the tension in string B remain the same as in the stationary case? Explain. (5 points)

\[\Sigma F_y = 0 \quad T_2 \frac{\sqrt{2}}{2} \frac{mg}{2} = 0 \]

\[T_2 = \frac{1}{2} mg \]

Dynamic case

\[mg \cos 45^\circ = T - mg \cos 45^\circ \]

\[\therefore T = mg \frac{\sqrt{2}}{2} \]

4. What does it mean that a force field F is conservative? Give example of a conservative force field and the corresponding potential energy. (5 points)

\[F \text{ is conservative if there exists a potential } V = V(x), \text{ such that } F = -\nabla V, \text{ e.g. } \text{ spring force:} \]

\[F = -k (r-r_0) \frac{r}{r} \]

\[V = \frac{1}{2} k \Delta r^2 \]

5. Derive the principle of angular momentum for a single particle. (5 points)
6. A 2-kg mass rests on a flat horizontal bar. The bar begins rotating in the vertical plane about O with a constant angular acceleration of 1 rad/s2. The mass is observed to slip relative to the bar when the bar is 30° above the horizontal. What is the static coefficient of friction between the mass and the bar? Does the mass slip toward or away from O? (25 points)

\[r = 1 \text{ m} = \text{constant} \Rightarrow \dot{r} = \ddot{r} = 0 \]

\[a_r = \ddot{r} - r \omega^2 = -r \omega^2 = -\frac{\pi}{3} \left[\frac{a}{s^2} \right] \]

\[a_\theta = r \alpha + 2 r \dot{\omega} = r \alpha = 1 \text{ m/s}^2 \]

\[\dot{\omega} = \frac{\frac{\pi}{3}}{r} \]

\[\omega^2 = \frac{a}{r} = \frac{\pi}{3} \]

\[\text{friction:} \quad m \dot{\omega} = N - mg \cos 30^\circ \quad \Rightarrow \quad N = m (1 + g \cos 30^\circ) \]

\[\text{acceleration:} \quad m \ddot{r} = F - mg \sin 30^\circ \]

\[\Rightarrow \quad F = m \ddot{r} + mg \sin 30^\circ = m \left(-\frac{\pi}{3} + g \frac{\sqrt{3}}{2} \right) > 0 \]

(That indicates that the mass will slide down the bar since F has to oppose the motion)

\[\mu = \frac{F}{N} = \frac{\mu (0.5 g - \frac{\pi}{3})}{\mu (1 + g \frac{15}{2})} = \frac{3.857}{3.495} = 0.406 \]
7. A 2-kg disk slides on a smooth horizontal table and is connected to an elastic cord whose tension is \(T = 6r \) N, where \(r \) is the radial position of the disk in meters. The disk is at \(r = 1 \) m when it is given an initial velocity of 4 m/s in the transverse direction. What is the maximum value of \(r \) reached by the disk? (25 points)

![Diagram of a disk sliding on a table connected to an elastic cord]

Conservation of angular momentum about 0

\[
mlv_{\theta_1} \cdot r_1 = mlv_{\theta_2} \cdot r_{\text{max}}
\]

\[
v_{\theta_2} \cdot r_{\text{max}} = 4 \cdot 1 = 4 \quad \Rightarrow \quad v_{\theta_0} = \frac{4}{r_{\text{max}}}
\]

Principle of work and energy

\[
\frac{m v_{\theta_0}^2}{2} = \frac{m v_{\theta_1}^2}{2} + \frac{6}{2} \left(1^2 - r_{\text{max}}^2 \right)
\]

Work done by the spring

\[
= 16 + 3 - 3r_{\text{max}}^2 = 19 - 3r_{\text{max}}^2
\]

\[
\frac{16}{r_{\text{max}}^2} = 19 - 3r_{\text{max}}^2
\]

\[
\frac{16}{x} = 19 - 3 \cdot x
\]

\[
16 = 19x - 3x^2
\]

\[
3x^2 - 19x + 16 = 0
\]

\[
x_{1,2} = \frac{19 \pm \sqrt{19^2 - 4 \cdot 3 \cdot 16}}{2 \cdot 3} = 5.33
\]

\(x = 1 \) corresponds to the initial position, so

\[
r_{\text{max}} = \sqrt{5.33} = 2.309 \text{ [m]}
\]
8. Bar AB rotates at 4 rad/s in the counterclockwise direction. Determine the velocity of point C. (25 points)

\[\mathbf{v}_C = \mathbf{v}_B + \mathbf{\omega}_{BD} \times \mathbf{r}_C \]

\[= (-2.4, 1.2, 0) + \frac{\mathbf{\omega}_{BD} (0, 0, 1.246)}{0.584, -1.168, 0} \]

\[= (-1.816, 0.032, 0) \]

\[\mathbf{v}_E = \mathbf{v}_D + \mathbf{\omega}_{DE} \times \mathbf{r}_E \]

\[= (-2.4, 1.2, 0) + \frac{\mathbf{\omega}_{DE} (0, 0, 1.246)}{0.584, -1.168, 0} \]

\[= \frac{-2.4 + 0.1\mathbf{\omega}_{BD} + 0.5\mathbf{\omega}_{DE}}{1.2 + 0.5\mathbf{\omega}_{BD} + 0.3\mathbf{\omega}_{DE}} = 0 \]

\[\mathbf{\omega}_{BD} = \begin{bmatrix} 0.1 & 0.5 \\ 0.8 & 0.3 \\ -1.2 & 0.3 \end{bmatrix} \]

\[\mathbf{\omega}_{DE} = \begin{bmatrix} 0.1 & 2.4 \\ 0.8 & -1.2 \\ -0.37 \end{bmatrix} \]
1. Use integration to compute the product of inertia I_{xy} for a triangle below. (5 points)

$$I_{xy} = \frac{1}{2} \int_0^b \int_0^{h(1-\frac{x}{b})} xy \, dy \, dx = \frac{1}{2} \int_0^b \left(\frac{x^2}{2} - \frac{2x^3}{6b} + \frac{x^4}{4b^2} \right) \, dx$$

$$= \frac{1}{2} \left[\frac{b^3}{3} \left(1 - \frac{2}{3} \frac{x^2}{b^2} + \frac{x^4}{4b^2} \right) \right]_0^b = \frac{1}{3} b^3 \left(\frac{1}{2} \frac{x^2}{b^2} + \frac{3}{4} \right) = \frac{1}{3} \cdot \frac{1}{2} b^2 h^2 = \frac{1}{12} \text{mbh}$$

2. System of coordinates $Oxyz$ is rotating with respect to a fixed system of coordinates $OXYZ$ around the $Z = z$ axis with a constant angular velocity ω. Particle P is moving with a constant velocity vector $\mathbf{v} = (v_x, 0, 0)$ in the fixed system of coordinates. Compute the Coriolis acceleration of the particle in frame $Oxyz$, at the instant when the two systems coincide with each other. (5 points)

$$a_c = \frac{2 \times \frac{\partial (0, 0, \omega)}{\partial (v_x, 0, 0)}}{(\omega x, 0, 0)} = \left(\mathbf{\omega} \times \mathbf{v} \right)$$
3. Derive the principle of angular impulse and momentum for an arbitrary system of particles. (5 points)

Consider case: \(\theta \) fixed.

\[
\sum (\mathbf{I}_i \times \mathbf{v}_i) = \sum \mathbf{I}_i \times \mathbf{v}_i + \mathbf{L}_i + \mathbf{R}_i
\]

\[
\mathbf{H}_0 = \sum \mathbf{I}_i \mathbf{v}_i + \sum \mathbf{F}_i \times \mathbf{r}_i
\]

4. Analyze the two scenarios depicted below. In which case do you expect a smaller initial acceleration of the system? Explain, why. (5 points)

In the second, forces are identical but the inertia is bigger.

5. Derive the formula for the kinetic energy of a rigid body undergoing an arbitrary planar motion. (5 points)

\[
\mathbf{v}_2 = \mathbf{v}_1 + \omega \times \mathbf{r}\]

\[
\mathbf{v}_2 = (v_{ox}, v_{oy}, 0) + \frac{\omega}{2} (0, 0, 0)
\]

\[
\mathbf{v}_2 = (v_{ox} - \omega y, v_{oy} + 2x, 0)
\]

\[
T = \frac{1}{2} \int (v_{ox} + v_{oy})^2 + (v_{oy} + 2x) \frac{\omega}{2} \int \mathbf{r} \times \mathbf{v} dV
\]

\[
= \frac{1}{2} m v_1^2 + \frac{1}{2} I_2 \omega^2
\]
6. The 2-kg slender bar and \(k \)-kg block are released from rest in the position shown. If friction is negligible, what is the block’s acceleration at that instant? (25 points)

\[I_C = \frac{1}{12} \cdot 2 \cdot 1^2 = 0.167 \text{ [kg}\cdot\text{m}^2] \]

\[I \alpha = 0.167 \alpha \]

\[19.62 \cdot 0.287 + 2(\alpha - 0.41\alpha)(0.41) - 0.167\alpha = 0 \]

\[0.82\alpha = -5.631 + 0.165\alpha + 0.336\alpha + 0.167\alpha \]

\[a = 0.117 \alpha \]

Substituting into (1) \[0.096\alpha = -5.631 + 0.668\alpha \]

\[\alpha = 9.844 \left[\frac{\text{ms}^2}{\text{s}^2} \right] \]

\[\Rightarrow a = 1.151 \left[\frac{\text{ms}^2}{\text{s}^2} \right] \]
7. The slender bar is released from rest with $\theta = 45^\circ$ and falls a distance $h = 1$ m onto the smooth floor. The length of the bar is 1 m and its mass is 2 kg. If the coefficient of restitution of the impact is $e = 0.4$, what is the angular velocity of the bar just after it hits the floor? (25 points)

\[
I_c = \frac{2I}{12} = 0.167 \text{ [kg m}^2]\]

\[
\text{Stage 1: Free fall, use the work and energy principle}
\]

\[
T_1 + U_{k1} = T_2
\]

\[
mgh = \frac{1}{2}mv^2
\]

\[
v = \sqrt{2gh} = 4.43 \text{ [m/s]}
\]

\[
\text{Stage 2: Impact}
\]

\[
\text{C}
\]

\[
\text{A}
\]

\[
\text{impact force}
\]

- Conservation of linear momentum in x-direction $\Rightarrow V_{\text{x after}} = 0$

- Conservation of angular momentum at fixed (on the floor) point A

Before:

$H_A = H_A$

\[
H_A = AC \times \frac{1}{m} v_C^2 + \frac{1}{2} \omega_c^2 I_c
\]

\[
(0, 0, 3.132) \text{ [m kg m}^2\text{]}\]

After:

$H_a = 0$

\[
H_a = AC \times \frac{1}{m} v_{C, \text{after}}^2 + \frac{1}{2} \omega_c^2 I_c
\]

\[
(-0.353, 0.353, 0)
\]

\[
(0, 0, -0.706 v_{C, \text{after}}^2) + (0, 0, 0.167 C, \text{after})
\]

\[
3.132 = -0.706 v_{C, \text{after}}^2 + 0.167 C, \text{after}\]

\[
0.4 = - \frac{v_{A, \text{after}}}{v_{A, \text{before}}} \Rightarrow v_{A, \text{after}} = -0.4 \cdot (-4.43) = 1.772 \text{ [m/s]}
\]
7 continued

- Kinematics

\[\mathbf{V}_C = \mathbf{V}_A + \omega \times \mathbf{A}_C = (V_{Ax}, V_{Ay}, 0) + \omega \left(-0.353, 0.353, 0 \right) \]

\[V_{Cy} = V_{Ay} - 0.353 \omega = 1.772 - 0.353 \omega \]

- Substituting into \(\ast \)

\[3.132 = -0.706 \left(1.772 - 0.353 \omega \text{ after} \right) + 0.167 \omega \text{ after} \]

\[3.132 = -1.251 + (0.249 + 0.167) \omega \text{ after} \]

\[\omega \text{ after} = 10.54 \left[\frac{\text{rad}}{\text{s}^2} \right] \]
8. The bar shown below is stationary relative to an inertial reference frame when the force \(F = 12 \mathbf{k} \) (N) is applied at the right end of the bar. No other forces or couples act on the bar. Determine the bar's angular acceleration relative to the inertial reference frame. (25 points)

\[\text{total mass } m = 6 \text{ kg} \]

\[\begin{align*}
x_c &= \frac{2 \cdot 1}{3} = 0.667 \text{ m} \\
y_c &= \frac{1 \cdot 1.5}{3} = 0.167 \text{ m}
\end{align*} \]

Step 1: Compute tensor of inertia at C

\[
I_x = \frac{1}{12} \cdot 2 \cdot 1^2 + 2 \cdot (0.5 - 0.167)^2 = 0.5 \text{ [kg m}^2]\]

\[
I_y = \frac{1}{12} \cdot 4 \cdot 2^2 + 4 \cdot (1 - 0.667)^2 + 0 + 2 \cdot 0.667^2 = 2.67 \text{ [kg m}^2]\]

\[I_x' = I_x \]

\[I_y' = I_y \]

\[
I_{xy} = 0 - 4 \cdot (1 - 0.667) \cdot 0.167 + 0 - 2 \cdot 0.167 \cdot (0.5 - 0.167) = -0.322 \text{ - 0.444} = -0.67 \text{ [kg m}^2]\]

\[I_{xz} = I_{yz} = 0 \]
Step 2: The rotational motion equation:

\[
\frac{d^2 \theta}{dt^2} + \omega \times (\omega \times \mathbf{r}) = \tau_c
\]

\[
\tau_c = \mathbf{C}_A \times \mathbf{F} = \mathbf{F} \times \mathbf{C}_A \begin{pmatrix} 1.333 & -0.167 & 0 \end{pmatrix} \begin{pmatrix} -2 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} 12 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} -16 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} \tau_c \end{pmatrix} [N m]
\]

\[
\begin{pmatrix} 0.5 & 0.67 & 0 \\ 0.67 & 2.67 & 0 \\ 0 & 0 & 3.17 \end{pmatrix} \begin{pmatrix} \alpha_x \\ \alpha_y \\ \alpha_z \end{pmatrix} = \begin{pmatrix} -2 \\ -16 \\ 0 \end{pmatrix}
\]

\[
\alpha_z = 0
\]

\[
\alpha_x = \frac{\begin{vmatrix} -2 & 0.67 \\ 0.5 & 2.67 \end{vmatrix}}{\begin{vmatrix} 0.5 & 0.67 \\ 0.67 & 2.67 \end{vmatrix}} = \frac{5.38}{0.886} = 6.07 \left[\frac{rad}{s^2} \right]
\]

\[
d_y = \frac{\begin{vmatrix} 0.67 & -16 \\ 0.886 & 0.886 \end{vmatrix}}{\begin{vmatrix} 0.5 & -2 \\ 0.67 & 2.67 \end{vmatrix}} = \frac{-6.66}{-0.02} = -7.52 \left[\frac{rad}{s^2} \right]
\]
1. At the instant shown, the coordinates of the slider A are $x = 1.5$, $y = 1.0$ ft, and its velocity represented in Cartesian coordinates is $v = (0, 5)$ ft/s. Determine the slider’s velocity components in polar coordinates. (5 points)

\[\sin \Theta = \frac{1}{\sqrt{1.5^2 + 0^2}} = 0.5547 \]
\[\cos \Theta = \frac{1.5}{\sqrt{1.5^2 + 0^2}} = 0.8321 \]
\[v_r = 5 \sin \Theta = 2.77 \text{ [ft/s]} \]
\[v_\Theta = 5 \cos \Theta = 4.16 \text{ [ft/s]} \]

\[\text{Check: } \sqrt{v_r^2 + v_\Theta^2} = 5.0 \quad \checkmark \]

2. Particles A and B are connected with a rigid link. Explain why the work of reactive forces representing the interaction between the particles is zero. (5 points)

\[\overrightarrow{F}_{BA} = \overrightarrow{F}_{AB} \]
\[F_{BA} = -F \frac{\overrightarrow{AB}}{|\overrightarrow{AB}|} \]

\[AB^2 = (r_B - r_A)^2 = \text{constant} \]

\[\therefore \text{ Incremental work } = \]
\[- F \frac{\overrightarrow{AB}}{|\overrightarrow{AB}|} \cdot (dr_B - dr_A) + F \frac{\overrightarrow{AB}}{|\overrightarrow{AB}|} \cdot dr_A \]
\[= -F \frac{\overrightarrow{AB}}{|\overrightarrow{AB}|} \cdot (dr_B - dr_A) = 0 \]
3. Is the drag force \(\mathbf{F} = (-cv^2, 0, 0), (c > 0) \) conservative? Explain. (5 points)

\[\mathbf{F} \quad \rightarrow \quad \mathbf{v} \]

No! Conservative force is expressed in terms of a potential \(\mathbf{F} = -\nabla \mathbf{V} \), where \(\mathbf{V} = \mathbf{V}(x, y, z) \) and, therefore, it may only depend upon the position, not velocity.

(5)

4. The bar is smooth. Determine the minimum velocity the 10-kg slider must have at \(A \) to reach point \(E \). (5 points)

\[\begin{align*}
\text{The point } &\text{ the slider must make it through point } E \\
\text{with a velocity at } E &> 0, \\
\frac{m \mathbf{v}_A^2}{2} - \frac{mgh}{3} &> 0 \\
\mathbf{v}_A^2 - \frac{mgh}{3} &> 0 \\
\mathbf{v}_A^2 &> \frac{2}{3} \frac{mgh}{3} = 58.86 \\
\mathbf{v}_A &> \sqrt{2gh} = 7.67 \left(\frac{m}{s} \right)
\end{align*} \]

(5)

5. Compute transformation matrix from system \(0xyz \) to system \(0x'y'z' \). (5 points)

\[\mathbf{T} = \begin{pmatrix}
-1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{pmatrix} \]

(5)
6. Objects A and B have masses m_A and m_B and velocities $v_A^{\text{before}}, v_B^{\text{before}}$. Show that, if coefficient of restitution $e = 1$, the total kinetic energy is conserved during the impact. (5 points)

$$e = \frac{v_B' - v_A'}{v_A - v_B} = 1$$

$$v_B' - v_A' = v_A - v_B$$

$$v_B' + v_B = v_A' + v_A$$

Conservation of linear momentum \(\Rightarrow \)

$$m_A v_A + m_B v_B = m_A v_A' + m_B v_B'$$

\[\Rightarrow \]

$$m_A (v_A - v_A') = m_B (v_B' - v_B) \quad \Rightarrow \quad v_B' + v_B = v_A' + v_A$$

Divide by 2 to finish...

7. Determine the instantaneous center (IC) of zero velocity for member BC. (5 points)
8. Compute the product of inertia I_{xy} for a quadrant of a homogeneous circle with radius R and mass m. (5 points)

$$
\begin{align*}
\text{Parameterization:} \\
&\begin{cases}
x = r \cos \theta & 0 < r < R \\
y = r \sin \theta & 0 < \theta < \frac{\pi}{2}
\end{cases} \\
\text{jacobian} \\
I_{xy} &= \int \int x y \, dA = \int_{0}^{\frac{\pi}{2}} \int_{0}^{R} r \cos \theta \cdot r \sin \theta \cdot r \, dr \, d\theta \\
&= \frac{R^4}{4} \left(1 + \frac{1}{4}\right) = \frac{R^4}{8} = \frac{\pi R^2}{8} = \frac{1}{2} m R^2
\end{align*}
$$

9. Derive the principle of linear momentum for a system of particles (5 points)

$$
\sum_{i} m_i \frac{d\mathbf{v}_i}{dt} = \mathbf{F}_i + \mathbf{R}_i \\
\sum_{i} m_i \frac{d\mathbf{v}_i}{dt} = \sum_{i} \mathbf{F}_i + \sum_{i} \mathbf{R}_i \\
\sum_{i} m_i \mathbf{v}_i (t_2) = \sum_{i} \mathbf{F}_i \cdot dt \\
\sum_{i} m_i \mathbf{v}_i (t_1) + \sum_{i} \mathbf{F}_i \cdot dt = \sum_{i} m_i \mathbf{v}_i (t_2)
$$

10. A slender bar with mass m and length l is rotating about its endpoint A with constant angular velocity $\omega = (0, 0, \omega)$. Compute the angular velocity of the bar with respect to point B (half way between point A and center of mass C). (5 points)

$$
\text{momentum at } t_1, \quad \text{impulse} \quad \text{momentum at } t_2
$$

Nothing to compute! Angular velocity is an attitude of the rigid body, i.e. it has nothing to do with any point of computation!
The 2-kg mass m is released from rest with the string horizontal. The length of the string is $L = 0.5$ m. Determine the velocity of the mass and the tension in the spring when $\theta = 45^\circ$. (25 points)

11. **Frenet coordinates:**
\[m a_n = T - mg \cos 45^\circ \]
\[a_n = \frac{v^2}{L} \implies T = \frac{m v^2}{L} + mg \cos 45^\circ \] \(\text{\textcircled{7}} \)

Principle of work and energy:
\[T_1 + U_{12} = T_2 \]
\[\rho mg L \sin \theta = \frac{1}{2} m v^2 \]
\[v^2 = 2 \rho g L \sin \theta \]
\[v = 2.63 \text{ m/s} \] \(\text{\textcircled{5}} \)

\[T = \frac{m v^2}{L} + mg \cos 45^\circ \]

\[= 27.67 + 13.87 = 41.54 \text{ N} \] \(\text{\textcircled{5}} \)
12. The 10-kg slender bar is released from rest in the horizontal position. When it has fallen to the position shown, what are the x and y components of force exerted on the bar by the pin support A? (25 points)

Principle of work and energy

\[T_t + U_{12} = T_f \]

\[U_{12} = 10 \cdot 9.81 \cdot 3 \cdot \sin 45^\circ = 69.37 \text{ [N m]} \]

\[T_f \cdot \frac{1}{2} I_A \omega^2 = 6.67 \omega^2 \]

\[69.37 = 6.67 \omega^2 \Rightarrow \omega = 3.226 \text{ [rad/s]} \]

Equation of rotational motion

\[I_A \alpha = M_A \]

13.33 \(\alpha \) = 10 \cdot 9.81 \cdot 1 \cos 45^\circ

\[\alpha = 5.204 \text{ [rad/s]} \]

Kinematics

\[\mathbf{r}_c = \mathbf{r}_A + \mathbf{x} \cdot \mathbf{a}_c = (0, 0, 5.204) - 3.226 \cdot \mathbf{v} \cdot (0.707, -0.707) \cdot (0, 0, 0) \]

\[= (11.04, 3.68, 0) \text{ [m]} \]

Equations of translational motion:

\[m \cdot a_{c_x} = H_A \Rightarrow H_A = 110.4 \text{ [N m]} \]

\[m \cdot a_{c_y} = v_A - 10.981 \Rightarrow v_A = 134.9 \text{ [N]} \]
13. The 1-kg sphere A is moving at 10 m/s when it strikes the end of the 3-kg stationary slender bar B. If the sphere adheres to the bar, what is the bar’s angular velocity after the impact? (25 points)

Step 1: Center of mass of the combined system:

\[y = \frac{3 \cdot 1}{1 + 3} = 0.75 \text{ [m]} \]

Step 2: Moment of inertia at center of mass C of the system

\[I_c = 1 \cdot 0.75^2 + \left(\frac{1}{12} \cdot 3 \cdot 2^2 + 3 \cdot 0.25^2 \right) \]

\[= 1.75 \text{ [kg m}^2] \]

Step 3: Conservation of angular momentum of the whole system at center of mass C

\[1 \cdot 10 \cdot 0.75 = I_c \omega_{afm} \]

\[\therefore \omega_{afm} = 4.29 \text{ [rad/s]} \]
13. The 1-kg sphere A is moving at 10 m/s when it strikes the end of the 3-kg stationary slender bar B. If the sphere adheres to the bar, what is the bar’s angular velocity after the impact? (25 points)

An alternative solution (there are many more...)

- Conservation of linear momentum for the bar in y-direction $\Rightarrow v_c' = 0$

- Conservation of linear momentum for the system in x-direction

$$1 \cdot 10 = 1 \cdot v_A' + 3 \cdot v_c' = 1 \cdot (v_c' + \omega) + 3v_c'$$

$$v_A' = v_c' + \omega \times \vec{r}_A = (v_c', 0, 0) + \frac{(0, 0, \omega)}{(0, 0, 0)}$$

$$= v_c' + \omega$$

- Conservation of angular momentum for the bar at stationary point that coincides with B

$$0 = \frac{1}{2} m v_c' (3 v_c', 0, 0) + (0, 0, I_c \omega) = (0, 0, \omega - 3 v_c')$$

$$\Rightarrow \omega = \frac{30}{7} \approx 4.29 \text{ rad/s}$$
14. A slender bar of mass m is released from rest in the position shown. The static and kinetic coefficients of friction at the floor and wall have the same value μ. If the bar slips, what is its angular acceleration at the instant of release? (25 points)

$$J_c = \frac{1}{12}ml^2$$

Kinematics:

\[
\begin{align*}
\dot{\alpha}_c &= \dot{\alpha}_A + \alpha \left((0, 0, \alpha) \right) \\
&= \dot{\alpha}_A + x \frac{\alpha}{A_c} \left(\frac{\dot{A}_C}{2 \sin \theta}, \frac{\dot{A}_C}{2 \cos \theta}, 0 \right) \\
&= \left(A_{AX}, 0, 0 \right) \left(-\frac{1}{2} \dot{A}_C \cos \theta, -\frac{1}{2} \dot{A}_C \sin \theta, 0 \right) \\
\therefore \dot{A}_{AX} &= -\alpha \frac{\dot{A}_C}{2} \sin \theta \\
\dot{\alpha}_c &= \frac{\dot{A}_C}{2} \cos \theta \\
\end{align*}
\]

\[\sum F_x = 0 \]

\[-\mu V_A + H_B - m \alpha \frac{\dot{A}_C}{2} \cos \theta = 0 \]

\[\sum F_y = 0 \]

\[V_A + \mu H_B - m (-\alpha \frac{\dot{A}_C}{2} \sin \theta) - mg = 0 \]

\[
\begin{pmatrix}
-\mu & 1 \\
1 & \mu
\end{pmatrix}
\begin{pmatrix}
V_A \\
H_B
\end{pmatrix}
=
\begin{pmatrix}
m \alpha \frac{\dot{A}_C}{2} \cos \theta \\
mg - m \alpha \frac{\dot{A}_C}{2} \sin \theta
\end{pmatrix}
\]
\[V_A = \left| \frac{1}{1 - \frac{m g - m \alpha \frac{1}{2} \sin \theta}{\mu}} \right| \frac{m \alpha \frac{1}{2} \cos \theta \mu}{1 - \mu} \]

\[= \frac{m \alpha \frac{1}{2} \cos \theta \mu - mg + m \alpha \frac{1}{2} \sin \theta}{\mu^2 - 1} \]

\[= \frac{mg - m \alpha \frac{1}{2} (\cos \theta \mu + \sin \theta)}{1 + \mu^2} \]

\[\sum M_B = 0 \]

\[V_A \sin \theta - \mu V_A \cos \theta \]

\[- mg \frac{1}{2} \sin \theta - m(-\alpha \frac{1}{2} \sin \theta) \frac{1}{2} \sin \theta \]

\[- m \alpha \frac{1}{2} \cos \theta \frac{1}{2} \cos \theta - \frac{1}{2} ml \alpha - \frac{1}{2} ml \alpha = 0 \]

\[\text{(one } \mu \text{ cancels out)} \]

\[\frac{mg - m \alpha \frac{1}{2} (\cos \theta \mu + \sin \theta)}{1 + \mu^2} \]

\[\cos \theta \mu \]

\[- \frac{1}{2} mg \sin \theta + \frac{1}{4} ml \alpha \sin^2 \theta - \frac{1}{2} ml \alpha \cos^2 \theta - \frac{1}{2} ml \alpha = 0 \]

\[\frac{mg (\sin \theta - \mu \cos \theta)}{1 + \mu^2} - \frac{1}{2} mg \sin \theta \]

\[+ \alpha \left(- \frac{m \frac{1}{2} (\cos \theta \mu + \sin \theta)}{1 + \mu^2} (\sin \theta - \mu \cos \theta) + \frac{1}{4} ml (\sin^2 \theta - \cos^2 \theta) - \frac{1}{2} ml \alpha \right) = 0 \]

\[\Rightarrow \alpha = \text{(some complex formula ...)} \]
15. The dimensions of the 6-kg plate are $b = 0.9\text{m}$ and $h = 0.6\text{m}$. The plane is supported with a ball-and-socket support at O. If the plate is held in the horizontal position and then released from rest, what are the components of its angular acceleration at that instant? (25 points)

\[\frac{y}{x} = \frac{h}{b} \]

\[I_x = \int_{0}^{b} \int_{0}^{b} y^2 \, dy \, dx = \int_{0}^{b} \frac{b^3 x^3}{6} \, dx = \frac{8}{3} \frac{b^4}{b} = \frac{8}{3} \frac{h^3}{b^3} \]

\[= \frac{1}{6} mb^2 = 0.36 \text{ [kg m}^2\text{]} \]

\[I_y = \int_{0}^{b} \int_{0}^{b} x^2 \, dy \, dx = \int_{0}^{b} x^2 \, dx = \frac{b^4}{4} \frac{h^4}{b} = \frac{8}{4} \frac{h^4}{b^4} \]

\[= \frac{1}{2} mb^2 = 2.43 \text{ [kg m}^2\text{]} \]
\[I_{xy} = \int_{0}^{b} \int_{0}^{x_g} xy \, dy \, dx \]
\[= \int_{0}^{b} x \left(\frac{b^2 - x^2}{2} \right) \, dx \]
\[= \frac{b}{2} \int_{0}^{b} \frac{x^2}{2} \, dx = \frac{b^2}{2} \left[\frac{x^4}{4} \right]_{0}^{b} \]
\[= \frac{1}{8} b^4 \]
\[I_z = I_x + I_y = 2.79 \text{ [kg m}^2\text{]} \]
\[I_{yz} = I_{xz} = 0 \]
\[\alpha_{0} = 0.36 \begin{pmatrix} 0.6 & 0.2 & 0 \\ -0.81 & 2.43 & 0 \end{pmatrix} \begin{pmatrix} \alpha_x \\ \alpha_y \\ \alpha_z \end{pmatrix} = \begin{pmatrix} -11.77 \\ 17.66 \\ 0 \end{pmatrix} \text{ [N m]} \]
\[M_{a0} = \begin{pmatrix} 0.36 & -0.81 & 0.26 \\ -0.81 & 2.43 & -11.77 \\ 0.26 & -11.77 & 35.32 \end{pmatrix} \begin{pmatrix} 0.6 & 0.2 & 0 \\ -0.81 & 2.43 & 0 \end{pmatrix} \begin{pmatrix} 0.6 & 0.2 & 0 \\ -0.81 & 2.43 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0.219 \\ 0 \end{pmatrix} \]
\[= \begin{pmatrix} -11.77 \\ 17.66 \\ 0 \end{pmatrix} \begin{pmatrix} 0.6 & 0.2 & 0 \\ -0.81 & 2.43 & 0 \end{pmatrix} \begin{pmatrix} 0.6 & 0.2 & 0 \\ -0.81 & 2.43 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0.219 \\ 0 \end{pmatrix} \]
\[= \begin{pmatrix} -3.181 \\ 0.219 \\ 14.52 \end{pmatrix} \text{ [N m]} \]
16. The homogeneous disk weighs 80 lb and its radius is $R = 1$ ft. It rolls on the plane surface. The spring constant is $k = 100$ lb/ft and the damping constant is $c = 3$ lb-s/ft. Determine the frequency of small vibrations of the disk relative to its equilibrium position. (25 points)

\[\dot{\alpha} = \ddot{x} \]
\[\ddot{x} = -\frac{1}{R} \dot{x} \]

\[\sum M_A = 0 \]

\[m\ddot{R} - \left(-\frac{1}{2} mR^2 \ddot{x}\right) + c\dot{R} + kR = 0 \]

\[\frac{3}{2} m \dddot{x} + c \dot{x} + kx = 0 \]

\[\omega = \frac{c}{3m} = \frac{3}{3 \times 32.2} = 0.4025 \quad \left[\frac{16 \text{ s}}{16 \text{ s}^2} \right] = \frac{1}{s} \]

\[\omega_0 = \frac{2c}{3m} = 26.83 \quad \left[\frac{16}{16} \text{ s}^2 \right] = \frac{1}{s} \]

\[\omega = \sqrt{\omega_0^2 - \gamma^2} = 5.16 \left[\frac{1}{s} \right] \]
17. (bonus) A satellite can be modeled as an 1000-kg cylinder 4m in length and 2m in diameter. If the nutation angle is \(\theta = 20^\circ \), and the spin rate \(\dot{\phi} \) is one revolution per second, what is the satellite's precession rate \(\dot{\psi} \) in revolutions per second? (25 points)
\[I_x = \int \int \int (r^2 \sin^2 \theta + z^2) \, dV \]

\[= \frac{S}{2} \left(\frac{R^4}{4} \pi h + \frac{R^2}{2} \cdot \frac{1}{2} \cdot \frac{h^3}{24} \right) = \frac{1}{24} \pi R^2 h \left(\frac{R^2}{4} + \frac{h^2}{8} \right) \]

\[\cos^2 \theta - \sin^2 \theta = \cos 2\theta \]

\[\sin^2 \theta = \frac{1 - \cos 2\theta}{2} \]

\[I_x = \int \int \int (r^2 \sin^2 \theta + r^2 \cos^2 \theta) \, dV \]

\[= \frac{1}{2} \int_0^{2\pi} \int_0^\frac{\pi}{2} \int_0^R (r^4 \sin^2 \theta + r^2 \cos^2 \theta) \, dr \, d\theta \, d\phi \]

\[= \frac{1}{2} \cdot 1000 \cdot 1^2 = 500 \, [\text{kg} \cdot \text{m}^2]\]

\[I_x = \frac{1}{12} \cdot 1000 \cdot (6 + 16) = 916.7 \, [\text{kg} \cdot \text{m}^2]\]
Equation of rotational motion

\[\dot{H}_c = M_c = 0 \]
\[(I_c \dot{\omega}) = 0 \]
\[I_c \ddot{\omega} + \gamma \times (I_c \omega) = 0 \]

Tensor of inertia at \(C \)

\[I_c = \begin{pmatrix} I_x & 0 & 0 \\ 0 & I_x & 0 \\ 0 & 0 & I_z \end{pmatrix} \]

\[\times \begin{pmatrix} 0, \sin \theta \dot{\psi}, \cos \theta \dot{\psi} \\ 0, \cos \theta \psi, \sin \theta \psi \end{pmatrix} \]

\[I_c \dot{\omega} = (0, I_x \sin \theta \psi, I_z (\cos \theta \dot{\psi} + \dot{\phi})) \]

\[(I_z - I_x) \cos \theta \sin \theta \psi \dot{x} + I_z \dot{\phi} \sin \theta \psi \dot{y} = 0 \]

\[\dot{\psi} = \frac{I_z}{(I_x - I_z) \cos \theta} \dot{\phi} \]

\[\psi \approx \frac{500}{416.7 \cos 20^\circ} \cdot 1.28 \cdot \left[\frac{\text{rev}}{s} \right] \]