## CSE386C <br> METHODS OF APPLIED MATHEMATICS Fall 2019, Final Exam, 9:00-noon, Fri, Dec 13, ACES 6.304

1. Let $T$ be a compact operator from a Hilbert space $U$ into a Hilbert space $V$.
(a) Define the notion of compact operators.
(b) Show that $T^{*} T$ and $T T^{*}$ are compact, self-adjoint, positive semi-definite operators from $U$ ( $V$, resp.) into itself.
(c) Prove that all eigenvalues of a self-adjoint operator are real.
(d) Prove that $T^{*} T$ and $T T^{*}$ have identical non-negative eigenvalues and derive a relation between the corresponding eigenspaces.
(25 points)
(a) See the book
(b) Composition of a compact and continuous operator (in any order) is compact. We have,

$$
\left(T^{*} T u, u\right)_{U}=\underbrace{(T u, T u)_{V}}_{\geq 0}=\left(u, T^{*} T u\right)
$$

and the same argument holds for $T T^{*}$.
(c) Let $\lambda \neq 0$ be an eigenvalue of a self-adjoint operator $A$ from a Hilbert space $U$ into itself, and $u$ the corresponding eigenvector. We have,

$$
\lambda(u, u)=(\lambda u, u)=(A u, u)=(u, A u)=(u, \lambda u)=\bar{\lambda}(u, u)
$$

Hence

$$
(\lambda-\bar{\lambda})(u, u)=0 \quad \Rightarrow \quad \lambda-\bar{\lambda}=0 \quad \Rightarrow \quad \lambda \in \mathbb{R} .
$$

(d) Let $(\lambda, u)$ be an eigenpair for $T^{*} T, \lambda \neq 0$,

$$
T^{*} T u=\lambda u .
$$

Apply $T$ to both sides of the equation to get,

$$
T T^{*} T u=\lambda T u
$$

which proves that $(\lambda, T u)$ is an eigenpair for $T T^{*}$. Converssely, if $(\lambda, v)$ is an eigenpair for $T T^{*}$ then $\left(\lambda, T^{*} v\right)$ is an eigenpair for $T^{*} T$. Let

$$
U_{\lambda}:=\mathcal{N}\left(\lambda-T^{*} T\right), \quad V_{\lambda}:=\mathcal{N}\left(\lambda-T T^{*}\right)
$$

be the eigenspaces corresponding to $\lambda$. The first property above proves that $T$ sets $U_{\lambda}$ into $V_{\lambda}$,

$$
T\left(U_{\lambda}\right) \subset V_{\lambda}
$$

Let $v \in V_{\lambda}$, i.e.

$$
T T^{*} v=\lambda v \quad \Rightarrow \quad v=T\left(\lambda^{-1} T^{*} v\right)
$$

i.e. there exists an $u \in U_{\lambda}$, namely, $u=\lambda^{-1} T^{*} v$ such that $v=T u$. In other words,

$$
T\left(U_{\lambda}\right)=V_{\lambda}
$$

By the same argument,

$$
T^{*}\left(V_{\lambda}\right)=U_{\lambda} .
$$

Finally,

$$
T^{*} T u=0 \quad \Rightarrow \quad T^{*} v=0 \text { for } v=T u \quad \Rightarrow \quad T T^{*} v=0
$$

i.e. $T\left(\mathcal{N}\left(T^{*} T\right)\right) \subset \mathcal{N}\left(T T^{*}\right)$. Similarly, $T^{*}\left(\mathcal{N}\left(T T^{*}\right)\right) \subset \mathcal{N}\left(T^{*} T\right)$. Note that $\mathcal{N}\left(T^{*} T\right)=\mathcal{N}(T)$ and $\mathcal{N}\left(T T^{*}\right)=\mathcal{N}\left(T^{*}\right)$.
2. (a) Define discrete, residual and continuous spectrum for an operator $A: U \supset D(A) \rightarrow U$ where $U$ is a Hilbert space.
(b) Determine spectrum of operator $A$ where

$$
U=L^{2}(\mathbb{R}) \quad D(A)=H^{1}(\mathbb{R}) \quad A u=\frac{d u}{d x}+u
$$

Hint: Use Fourier transform.
(25 points)
This is a slight modification of the example discussed in the book for $A u=u^{\prime}$. Direct computations using Fourier transform reveal that there is neither point nor residual spectrum. The continuous spectrum consists of the line $\lambda=1+i \xi, \xi \in \mathbb{R}$.
3. Consider a first order operator $A$ in $L^{2}(0,1)$,

$$
D(A)=\left\{u \in H^{1}(0,1): u(0)=u(1)=0\right\} \quad A u=u^{\prime}-2 u
$$

where the derivative is understood in the sense of distributions.
(a) Define a closed operator and prove that operator $A$ is closed. You may use the fact that pointwise value $u(x), x \in[0,1]$ of $u \in H^{1}(0,1)$ represents a continuous functional.
(b) Determine the adjoint operator $A^{*}$ and its null space.
(c) Prove that operator $A$ is bounded below in $L^{2}(0,1)$.
(d) Discuss the well posedness of the problem:

$$
u \in D(A), \quad A u=f
$$

with an appropriate right-hand side $f$.
(25 points)
See book for definitions.
Answers:
(a) Let $u_{n} \in D(A)$ and $\left(u_{n}, A u_{n}\right) \rightarrow(u, v)$, i.e. $u_{n} \rightarrow u, A u_{n} \rightarrow v$, all convergence understood in the $L^{2}$-sense. Consequently, $u_{n}^{\prime} \rightarrow v+2 u$. By definition,

$$
\int u_{n}^{\prime} \phi=-\int u_{n} \phi^{\prime} \quad \forall \phi \in C_{0}^{\infty}(0,1)
$$

Passing to the limit on both sides, we get

$$
\int(v+2 u) \phi=-\int u \phi^{\prime} \quad \forall \phi \in C_{0}^{\infty}(0,1)
$$

which proves that $v+2 u=u^{\prime}$ in the sense of distributions.
Thus $u^{\prime}=v+2 u \in L^{2}(0,1)$ and, therefore, $u_{n} \rightarrow u$ also in $H^{1}(0,1)$ which in turn implies that $u(0)=u(1)=0$. Consequently, $u \in D(A)$, and $v=u^{\prime}-2 u=A u$ as required.
(b) Integration by part argument gives:

$$
\begin{aligned}
D\left(A^{*}\right) & =H^{1}(0,1) \quad A^{*} v=-v^{\prime}-2 v \\
\mathcal{N}\left(A^{*}\right) & =\mathbb{R} e^{-2 x}:=\left\{c e^{-2 x}: c \in \mathbb{R}\right\}
\end{aligned}
$$

(c) We have,

$$
\|A u\|^{2}=\int_{0}^{1}\left(u^{\prime}-2 u\right)^{2}=\int_{0}^{1}\left(u^{\prime}\right)^{2}-4 \int_{0}^{1} u u^{\prime}+4 \int_{0}^{1} u^{2}=\int_{0}^{1}\left(u^{\prime}\right)^{2} 4 \int_{0}^{1} u^{2} \geq \underbrace{\left(C_{P}+4\right)}_{=: \alpha^{2}}\|u\|^{2}
$$

where $C_{P}$ is the Poincarè constant. Note that

$$
\int_{0}^{1} 2 u u^{\prime}=\int_{0}^{1}\left(u^{2}\right)^{\prime}=\left.u^{2}\right|_{0} ^{1}=0 \quad \text { for } u \in D(A)
$$

(d) For every right hand side $f \in L^{2}(0,1)$ that satisfies the compatibility condition:

$$
\int_{0}^{1} f(x) e^{-2 x} d x=0
$$

the problem has a unique solution that depends continuously upon the data

$$
\|u\| \leq \alpha^{-1}\|f\|
$$

where $\alpha$ is the boundedness below constant.
4. Consider the "ultraweak" variational formulation of the previous problem,

$$
\left\{\begin{array}{l}
u \in U:=L^{2}(0,1) \\
\underbrace{\int_{0}^{1} u A^{*} v d x}_{b(u, v)}=\underbrace{\int_{0}^{1} f v d x}_{l(v)} \quad \forall v \in V:=H^{1}(0,1)
\end{array}\right.
$$

where $A^{*}$ denotes the formal adjoint of $A, A^{*} v=-v^{\prime}-2 v$.
(a) Define operator $B: U \rightarrow V^{\prime}$ and its conjugate corresponding to the bilinear form $b(u, v)$.
(b) Use Babuška-Nečas Theorem and results from the previous problem to investigate the well-posedeness of the problem.

Hint: Can you relate the inf-sup constant for this problem with the boundedness below (Friedrichs) constant of operator $A$ from the previous problem ? ( 25 points)
There are two operators associated with the bilinear form:

$$
\begin{aligned}
& B: L^{2}(0,1) \rightarrow\left(H^{1}(0,1)\right)^{\prime} \\
& B^{\prime}: H^{1}(0,1) \rightarrow L^{2}(0,1) \sim\left(L^{2}(0,1)\right)^{\prime}
\end{aligned}
$$

Due to reflexivity of Hilbert space, operator $B^{\prime}$ can be identified with the transpose of $B$. The whole point of this exercise is to realize that transpose $B^{\prime}$ coincides with the adjoint $A^{*}$ discussed in the previous problem. Direct application of Cauchy-Schwartz inequality shows that both forms: $b(u, v)$ and $l(v)$ are continuous. Finally, the Closed Range Theorem for continuous operators implies that

$$
\gamma=\inf _{u \in L^{2}} \sup _{v \in H^{1}} \frac{\left|\int_{0}^{1} u\left(-v^{\prime}-2 v\right)\right|}{\|u\|_{L^{2}}\|v\|_{H^{1}}}=\inf _{[v] \in H^{1} / \mathcal{N}\left(B^{\prime}\right)} \sup _{u \in L^{2}} \frac{\left|\int_{0}^{1} u\left(-v^{\prime}-2 v\right)\right|}{\|u\|_{L^{2}}\|[v]\|_{H^{1} / \mathcal{N}\left(B^{\prime}\right)}} .
$$

Since $B^{\prime}=A^{*}$, the right-hand side coincides with the boundedness below (Friedrichs) constant for the quotient operator corresponding to $A^{*}$. But, by the Closed Range Theorem for closed operators, this constant is equal exactly to constant $\alpha$ discussed in the previous problem. Consequently, there is no need to prove anything new. Application of Babuška-Nečas Theorem implies that, for any right-hand side $f$ satisfying the compatibility condition, we have a unique solution that depends continuously upon the data. The subtle difference between the strong and (ultraweak) variational formulations is the regularity. The ultraweak formulation may accommodate "distributional loads":

$$
l \in\left(H^{1}(0,1)\right)^{\prime}
$$

with the continuous dependence upon data modified accordingly:

$$
\|u\| \leq \gamma^{-1}\|l\|_{\left(H^{1}(0,1)\right)^{\prime}} .
$$

