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1. Define the following notions and provide a non-trivial example (2+2 points each):

• (General) topological vector space,

• Locally convex topological vector space,

• Minkowski functional,

• Norm of a continuous, linear map,

• Open map.

See the book.

2. State and prove three out of the four theorems (10 points each):

• Properties of Minkowski Set (Prop. 5.2.2),

• Characterization of convergence in Schwartz test space (Prop. 5.3.2),

• Uniform Boundedness Theorem (Thm. 5.8.1),

• Characterization of Continuous Linear Operators in Normed Spaces (Prop. 5.6.1).

See the book.

3. Show that each of the seminorms inducing a locally convex topology is continuous with
respect to this topology (10 points).

This is a direct consequence of the way we define neighborhoods in the l.c. topology. Let pι
be one of the seminorms defining the topology and ε > 0. The set:

M({ι}, ε) := {f : |pι(f)| < ε}

is, by definition, a neighborhood of 0 and, trivially,

f ∈M({ι}, ε) ⇒ |pι(f)| < ε .

4. Let X and Y be two arbitrary topological vector spaces. Show that a linear transformation
A ∈ L(X, Y ) is continuous iff it is continuous at 0. (10 points).

This is a direct consequence of the way we set up neighborhoods in a t.v.s. If B0 is the base of
neighborhoods of 0 then x+B0 =: Bx is the base of neighborhoods of x. Let y+B ∈ y+B0



be an arbitrary neighborhood of y = Ax ∈ Y . If A is continuous at 0 then there exists a
neighborhood C ∈ B0 such that

A(C) ⊂ B .

It follows that
A(x+ C) = Ax+ A(C) ⊂ y +B .

5. Consider space C([0, 1]) with the pointwise convergence topology introduced by seminorms

px(f) := |f(x)|, x ∈ [0, 1] .

Show that the seminorms satisfy the axiom of separation which implies that the l.c.t.v.s. is
well-defined. Demonstrate that fn → f in that topology if and only if

fn(x)→ f(x) ∀x ∈ [0, 1] .

(10 points).

The axiom of separation is trivially satisfied. If f ∈ C([0, 1]), f 6= 0 then there exists
x ∈ [0, 1] such that f(x) 6= 0. Consequently,

px(f) = |f(x)| > 0 .

By linearity, it is sufficient to show the result for f = 0, i.e.

fn → 0 in the topology ⇔ fn(x)→ 0, ∀x ∈ [0, 1] .

If fn → 0 then fn(x) = px(fn) → 0 as well since px is continuous in the topology (see the
problem above). Conversely, let

B(I0, ε) = {f ∈ C([0, 1]) : |f(x)| < ε, x ∈ I0}, I0 ⊂ [0, 1], I0 finite

be an arbitrary neighborhood of 0. For each x ∈ I0 there exists Nx such that

n ≥ Nx ⇒ |fn(x)| < ε .

Set
N := max

x∈I0
Nx .

Note that #I0 <∞ implies that N is well defined. Then,

n ≥ N ⇒ |fn(x)| < ε ∀x ∈ I0 ⇒ fn ∈ B(I0, ε) .



6. Let A be a matrix representing a linear map from (IRn, ‖ · ‖∞) into (IRn, ‖ · ‖1). Show that

‖A‖∞,1 ≤
∑
ij

|Aij|

but construct a counterexample for the equality. (20 points)

Let |xj| ≤ 1, j = 1, . . . , n. Then |
∑N

j=1Aijxj| ≤
∑n

j=1 |Aij|. Consequently,

‖Ax‖1 =
n∑
i=1

|
n∑
j=1

Aijxj| ≤
n∑
i=1

n∑
j=1

|Aij|

Take now n = 2, and consider matrix

A =

[
1 1
1 −1

]
So,

Ax = (x1 + x2, x1 − x2)T

and
‖Ax‖1 = |x1 + x2|+ |x1 − x2|

The maximum,
max
‖x‖∞≤1

‖Ax‖1

is attained on the boundary ‖x‖∞ = 1. Also,

‖A(−x)‖1 = ‖ −Ax‖1 = ‖Ax‖1

so it is sufficient to consider only the following two cases.

Case: |x1| ≤ 1, x2 = 1.

‖Ax‖1 = |x1 + 1|+ |x1 − 1| = x1 + 1 + 1− x1 = 2

Case: x1 = 1, |x2| ≤ 1.

‖Ax‖1 = |1 + x2|+ |1− x2| = 2

Consequently,
‖A‖∞,1 = 2 <

∑
i,j

|Aij| = 4


