CSE386C
 METHODS OF APPLIED MATHEMATICS Fall 2019, Exam 1

1. Define the following notions and provide a non-trivial example ($2+2$ points each):

- (General) topological vector space,
- Locally convex topological vector space,
- Minkowski functional,
- Norm of a continuous, linear map,
- Open map.

See the book.
2. State and prove three out of the four theorems (10 points each):

- Properties of Minkowski Set (Prop. 5.2.2),
- Characterization of convergence in Schwartz test space (Prop. 5.3.2),
- Uniform Boundedness Theorem (Thm. 5.8.1),
- Characterization of Continuous Linear Operators in Normed Spaces (Prop. 5.6.1).

See the book.
3. Show that each of the seminorms inducing a locally convex topology is continuous with respect to this topology (10 points).
This is a direct consequence of the way we define neighborhoods in the l.c. topology. Let p_{ι} be one of the seminorms defining the topology and $\epsilon>0$. The set:

$$
M(\{\iota\}, \epsilon):=\left\{f:\left|p_{\iota}(f)\right|<\epsilon\right\}
$$

is, by definition, a neighborhood of 0 and, trivially,

$$
f \in M(\{\iota\}, \epsilon) \quad \Rightarrow \quad\left|p_{\iota}(f)\right|<\epsilon
$$

4. Let X and Y be two arbitrary topological vector spaces. Show that a linear transformation $A \in L(X, Y)$ is continuous iff it is continuous at 0 . (10 points).
This is a direct consequence of the way we set up neighborhoods in a t.v.s. If \mathcal{B}_{0} is the base of neighborhoods of 0 then $x+\mathcal{B}_{0}=: \mathcal{B}_{x}$ is the base of neighborhoods of x. Let $y+B \in y+\mathcal{B}_{0}$
be an arbitrary neighborhood of $y=A x \in Y$. If A is continuous at 0 then there exists a neighborhood $C \in \mathcal{B}_{0}$ such that

$$
A(C) \subset B
$$

It follows that

$$
A(x+C)=A x+A(C) \subset y+B
$$

5. Consider space $C([0,1])$ with the pointwise convergence topology introduced by seminorms

$$
p_{x}(f):=|f(x)|, \quad x \in[0,1] .
$$

Show that the seminorms satisfy the axiom of separation which implies that the l.c.t.v.s. is well-defined. Demonstrate that $f_{n} \rightarrow f$ in that topology if and only if

$$
f_{n}(x) \rightarrow f(x) \quad \forall x \in[0,1] .
$$

(10 points).
The axiom of separation is trivially satisfied. If $f \in C([0,1]), f \neq 0$ then there exists $x \in[0,1]$ such that $f(x) \neq 0$. Consequently,

$$
p_{x}(f)=|f(x)|>0 .
$$

By linearity, it is sufficient to show the result for $f=0$, i.e.

$$
f_{n} \rightarrow 0 \text { in the topology } \quad \Leftrightarrow \quad f_{n}(x) \rightarrow 0, \forall x \in[0,1] .
$$

If $f_{n} \rightarrow 0$ then $f_{n}(x)=p_{x}\left(f_{n}\right) \rightarrow 0$ as well since p_{x} is continuous in the topology (see the problem above). Conversely, let

$$
B\left(I_{0}, \epsilon\right)=\left\{f \in C([0,1]):|f(x)|<\epsilon, x \in I_{0}\right\}, \quad I_{0} \subset[0,1], I_{0} \text { finite }
$$

be an arbitrary neighborhood of 0 . For each $x \in I_{0}$ there exists N_{x} such that

$$
n \geq N_{x} \quad \Rightarrow \quad\left|f_{n}(x)\right|<\epsilon
$$

Set

$$
N:=\max _{x \in I_{0}} N_{x}
$$

Note that $\# I_{0}<\infty$ implies that N is well defined. Then,

$$
n \geq N \quad \Rightarrow \quad\left|f_{n}(x)\right|<\epsilon \quad \forall x \in I_{0} \quad \Rightarrow \quad f_{n} \in B\left(I_{0}, \epsilon\right)
$$

6. Let A be a matrix representing a linear map from $\left(\mathbb{R}^{n},\|\cdot\|_{\infty}\right)$ into $\left(\mathbb{R}^{n},\|\cdot\|_{1}\right)$. Show that

$$
\|A\|_{\infty, 1} \leq \sum_{i j}\left|A_{i j}\right|
$$

but construct a counterexample for the equality. (20 points)
Let $\left|x_{j}\right| \leq 1, j=1, \ldots, n$. Then $\left|\sum_{j=1}^{N} A_{i j} x_{j}\right| \leq \sum_{j=1}^{n}\left|A_{i j}\right|$. Consequently,

$$
\|\boldsymbol{A} \boldsymbol{x}\|_{1}=\sum_{i=1}^{n}\left|\sum_{j=1}^{n} A_{i j} x_{j}\right| \leq \sum_{i=1}^{n} \sum_{j=1}^{n}\left|A_{i j}\right|
$$

Take now $n=2$, and consider matrix

$$
\boldsymbol{A}=\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]
$$

So,

$$
\boldsymbol{A} \boldsymbol{x}=\left(x_{1}+x_{2}, x_{1}-x_{2}\right)^{T}
$$

and

$$
\|\boldsymbol{A} \boldsymbol{x}\|_{1}=\left|x_{1}+x_{2}\right|+\left|x_{1}-x_{2}\right|
$$

The maximum,

$$
\max _{\|\boldsymbol{x}\|_{\infty} \leq 1}\|\boldsymbol{A} \boldsymbol{x}\|_{1}
$$

is attained on the boundary $\|\boldsymbol{x}\|_{\infty}=1$. Also,

$$
\|\boldsymbol{A}(-\boldsymbol{x})\|_{1}=\|-\boldsymbol{A} \boldsymbol{x}\|_{1}=\|\boldsymbol{A} \boldsymbol{x}\|_{1}
$$

so it is sufficient to consider only the following two cases.
Case: $\left|x_{1}\right| \leq 1, x_{2}=1$.

$$
\|\boldsymbol{A} \boldsymbol{x}\|_{1}=\left|x_{1}+1\right|+\left|x_{1}-1\right|=x_{1}+1+1-x_{1}=2
$$

Case: $x_{1}=1,\left|x_{2}\right| \leq 1$.

$$
\|\boldsymbol{A} \boldsymbol{x}\|_{1}=\left|1+x_{2}\right|+\left|1-x_{2}\right|=2
$$

Consequently,

$$
\|\boldsymbol{A}\|_{\infty, 1}=2<\sum_{i, j}\left|A_{i j}\right|=4
$$

