Extreme-Scale Solver for Earth’s Mantle –
Spectral-Geometric-Algebraic Multigrid Methods for
Nonlinear, Heterogeneous Stokes Flow

Johann Rudi1 Cristiano Malossi2 Tobin Isaac3 Georg Stadler4
Michael Gurnis5 Peter Staar2 Yves Ineichen2 Costas Bekas2
Alessandro Curioni2 Omar Ghattas1,6

1Institute for Computational Engineering and Sciences,
The University of Texas at Austin, USA
2Foundations of Cognitive Solutions, IBM Research – Zurich, Switzerland
3Computing Institute, The University of Chicago, USA
4Courant Institute of Mathematical Sciences, New York University, USA
5Seismological Laboratory, California Institute of Technology, USA
6Jackson School of Geosciences and Department of Mechanical Engineering,
The University of Texas at Austin, USA
Outline

Driving scientific problem & computational challenges

w-BFBT and improved robustness of over established state of the art

HMG: Hybrid spectral-geometric-algebraic multigrid

Algorithmic scalability for HMG+w-BFBT

Parallel scalability and performance for HMG+w-BFBT
Incompressible Stokes flow with heterogeneous viscosity

Commonly occurring problem in CS&E:

Creeping non-Newtonian fluid modeled by incompressible Stokes equations with power-law rheology yields spatially-varying and highly heterogeneous viscosity μ after linearization.

Nonlinear incompressible Stokes PDE:

$$-\nabla \cdot [\mu(u, x) (\nabla u + \nabla u^\top)] + \nabla p = f$$

viscosity μ, RHS forcing f

$$-\nabla \cdot u = 0$$

seek: velocity u, pressure p

Linearization, then discretization with inf-sub stable finite elements yields:

$$\begin{bmatrix} A_\mu & B^\top \\ B & 0 \end{bmatrix} \begin{bmatrix} u \\ p \end{bmatrix} = \begin{bmatrix} f \\ 0 \end{bmatrix}$$

→ poor conditioning due to heterogeneous μ

Iterative scheme with upper triangular block preconditioning:

$$\begin{bmatrix} A_\mu & B^\top \\ B & 0 \end{bmatrix} \begin{bmatrix} \tilde{A}_\mu & B^\top \\ 0 & \tilde{S} \end{bmatrix}^{-1} \begin{bmatrix} u \\ p \end{bmatrix} = \begin{bmatrix} f \\ 0 \end{bmatrix}$$

$\tilde{A}_\mu^{-1} \approx A_\mu^{-1}$

$\tilde{S}^{-1} \approx S^{-1} := (BA_\mu^{-1}B^\top)^{-1}$
Severe challenges for parallel scalable PDE solvers

... arising, e.g., in Earth’s mantle convection:

- Severe nonlinearity, heterogeneity, and anisotropy of the Earth’s rheology
- Sharp viscosity gradients in narrow regions (6 orders of magnitude drop in ~5 km)
- Wide range of spatial scales and highly localized features, e.g., plate boundaries of size $O(1 \text{ km})$ influence plate motion at continental scales of $O(1000 \text{ km})$
- Adaptive mesh refinement is essential
- High-order finite elements $Q_k \times P_{k-1}^{\text{disc}}$, order $k \geq 2$, with local mass conservation; yields a difficult to deal with discontinuous, modal pressure approximation
Outline

Driving scientific problem & computational challenges

w-BFBT and improved robustness of over established state of the art

HMG: Hybrid spectral-geometric-algebraic multigrid

Algorithmic scalability for HMG+w-BFBT

Parallel scalability and performance for HMG+w-BFBT
Propose: \(w \)-BFBT inverse Schur complement approx.

\[
\begin{bmatrix}
 A_\mu & B^\top \\
 B & 0 \\
\end{bmatrix}
\begin{bmatrix}
 \tilde{A}_\mu & B^\top \\
 0 & \tilde{S} \\
\end{bmatrix}^{-1}
\begin{bmatrix}
 u \\
 p \\
\end{bmatrix} =
\begin{bmatrix}
 f \\
 0 \\
\end{bmatrix}
\]

\(\tilde{A}_\mu^{-1} \approx A_\mu^{-1} \)

\(\tilde{S}^{-1} \approx S^{-1} := (BA_\mu^{-1}B^\top)^{-1} \)
Propose: \(w \)-BFBT inverse Schur complement approx.

\[
\begin{bmatrix}
A_\mu & B^T \\
B & 0
\end{bmatrix}
\begin{bmatrix}
\tilde{A}_\mu & B^T \\
0 & \tilde{S}
\end{bmatrix}^{-1}
\begin{bmatrix}
u \\
p
\end{bmatrix}
=
\begin{bmatrix}
f \\
0
\end{bmatrix}
\]

\(\tilde{A}_\mu^{-1} \approx A_\mu^{-1} \)

\(\tilde{S}^{-1} \approx S^{-1} := (BA_\mu^{-1}B^T)^{-1} \)

Underlying principle of BFBT / Least Squares Commutators (LSC): find a commutator matrix \(X \) s.t. (denote unit vectors by \(e_j \))

\[
A_\mu D^{-1}B^T - B^T X \approx 0 \quad \text{or} \quad \min_X \left\| A_\mu D^{-1}B^T e_j - B^T X e_j \right\|_C^2 \quad \forall j
\]

\[
\Rightarrow \quad \tilde{S}_{\text{BFBT}}^{-1} := \left(BC^{-1}B^T \right)^{-1} \left(BC^{-1}A_\mu D^{-1}B^T \right) \left(BD^{-1}B^T \right)^{-1} .
\]

Choice of matrices \(C, D \) is critical for convergence and robustness.
Propose: w-BFBT inverse Schur complement approx.

\[
\begin{bmatrix}
A_\mu & B^T \\
B & 0
\end{bmatrix}
\begin{bmatrix}
\tilde{A}_\mu & B^T \\
0 & \tilde{S}
\end{bmatrix}^{-1}
\begin{bmatrix}
u \\
p
\end{bmatrix}
=
\begin{bmatrix}
f \\
0
\end{bmatrix}
\tilde{A}_\mu^{-1} \approx A_\mu^{-1}
\tilde{S}^{-1} \approx S^{-1} := (BA_\mu^{-1}B^T)^{-1}
\]

Underlying principle of BFBT / Least Squares Commutators (LSC):
find a commutator matrix \(X \) s.t. (denote unit vectors by \(e_j \))

\[
A_\mu D^{-1} B^T - B^T X \approx 0 \quad \text{or} \quad \min_X \| A_\mu D^{-1} B^T e_j - B^T X e_j \|_C^{-2} \quad \forall j
\]

\[
\Rightarrow \quad \tilde{S}^{-1}_{\text{BFBT}} := \left(B C^{-1} B^T \right)^{-1} \left(B C^{-1} A_\mu D^{-1} B^T \right) \left(B D^{-1} B^T \right)^{-1}.
\]

Choice of matrices \(C, D \) is critical for convergence and robustness.

\[
\tilde{S}^{-1}_{w-\text{BFBT}} := \left(B C_\mu^{-1} B^T \right)^{-1} \left(B C_\mu^{-1} A_\mu D^{-1}_\mu B^T \right) \left(B D^{-1}_\mu B^T \right)^{-1}
\]

where \(C_\mu = D_\mu := \tilde{M}_u(\sqrt{\mu}) \) are responsible for efficacy and robustness.
Robustness of w-BFBT over established state of the art

<table>
<thead>
<tr>
<th>Problem difficulty (number of sinkers)</th>
<th>Number of GMRES iterations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#iterations with $M_p(1/\mu)$</th>
<th>10^4</th>
<th>10^6</th>
<th>10^8</th>
<th>10^{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1-rand</td>
<td>29</td>
<td>31</td>
<td>31</td>
<td>29</td>
</tr>
<tr>
<td>S8-rand</td>
<td>64</td>
<td>79</td>
<td>93</td>
<td>165</td>
</tr>
<tr>
<td>S16-rand</td>
<td>85</td>
<td>167</td>
<td>231</td>
<td>891</td>
</tr>
<tr>
<td>S24-rand</td>
<td>117</td>
<td>286</td>
<td>3279</td>
<td>5983</td>
</tr>
<tr>
<td>S28-rand</td>
<td>108</td>
<td>499</td>
<td>2472</td>
<td>>10000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#iterations with w-BFBT</th>
<th>10^4</th>
<th>10^6</th>
<th>10^8</th>
<th>10^{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1-rand</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>S8-rand</td>
<td>38</td>
<td>40</td>
<td>41</td>
<td>44</td>
</tr>
<tr>
<td>S16-rand</td>
<td>40</td>
<td>45</td>
<td>47</td>
<td>48</td>
</tr>
<tr>
<td>S24-rand</td>
<td>31</td>
<td>32</td>
<td>39</td>
<td>55</td>
</tr>
<tr>
<td>S28-rand</td>
<td>29</td>
<td>31</td>
<td>42</td>
<td>60</td>
</tr>
</tbody>
</table>
Outline

Driving scientific problem & computational challenges

w-BFBT and improved robustness of over established state of the art

HMG: Hybrid spectral-geometric-algebraic multigrid

Algorithmic scalability for HMG+w-BFBT

Parallel scalability and performance for HMG+w-BFBT
HMG: Hybrid spectral-geometric-algebraic multigrid

- Multigrid hierarchy of nested meshes is generated from an **adaptively refined octree-based mesh** via spectral-geometric coarsening.
- **Re-discretization** of PDEs at coarser levels.
- **Parallel repartitioning** of coarser meshes for load-balancing (crucial for AMR); sufficiently coarse meshes occupy only **subsets of cores**.
- **Coarse grid solver**: AMG (PETSc’s GAMG) invoked on small core counts.
HMG: Hybrid spectral-geometric-algebraic multigrid

- **High-order** L^2-projection onto coarser levels; restriction & interpolation are adjoints of each other in L^2-sense
- **Chebyshev accelerated Jacobi smoother** (Cheb. from PETSc) with tensorized matrix-free high-order stiffness apply; assembly of high-order diagonal only
- Efficacy, i.e. error reduction, of HMG V-cycles is independent of core count
- No collective communication needed in spectral-geometric MG cycles
p4est: Parallel forest-of-octrees AMR library [p4est.org]

Scalable geometric multigrid coarsening due to:

- **Forest-of-octree** based meshes enable fast refinement/coarsening
- Octrees and **space filling curves** used for fast neighbor search, mesh repartitioning, and 2:1 mesh balancing in parallel

Colors depict different processor cores.
Geometric coarsening: Repartitioning & core-thinning

- Parallel repartitioning of locally refined meshes for **load balancing**
- **Core-thinning** to avoid excessive communication in multigrid cycle
- **Reduced MPI communicators** containing only non-empty cores
- **Ensure coarsening across core boundaries**: Partition families of octants/elements on same core for next coarsening sweep

Colors depict different processor cores, *numbers* indicate element count on each core.
Outline

Driving scientific problem & computational challenges

w-BFBT and improved robustness of over established state of the art

HMG: Hybrid spectral-geometric-algebraic multigrid

Algorithmic scalability for HMG+w-BFBT

Parallel scalability and performance for HMG+w-BFBT
Algorithmic scalability for HMG+w-BFBT (decreasing h)

Discretization parameters to test algorithmic scalability:
- Finite element order $k = 2$ is fixed ($Q_k \times P_{k-1}^{\text{disc}}$)
- Vary mesh refinement level ℓ

Multigrid parameters for A_μ and $K_d := BC_\mu^{-1}B^\top$:
- 1 HMG V-cycle with 3+3 smoothing

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.11</td>
<td>18</td>
<td>0.02</td>
<td>8</td>
<td>0.12</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>0.82</td>
<td>18</td>
<td>0.13</td>
<td>7</td>
<td>0.95</td>
<td>33</td>
</tr>
<tr>
<td>6</td>
<td>6.44</td>
<td>18</td>
<td>1.05</td>
<td>6</td>
<td>7.49</td>
<td>33</td>
</tr>
<tr>
<td>7</td>
<td>50.92</td>
<td>18</td>
<td>8.39</td>
<td>6</td>
<td>59.31</td>
<td>34</td>
</tr>
<tr>
<td>8</td>
<td>405.02</td>
<td>18</td>
<td>67.11</td>
<td>6</td>
<td>472.12</td>
<td>34</td>
</tr>
<tr>
<td>9</td>
<td>3230.67</td>
<td>18</td>
<td>536.87</td>
<td>6</td>
<td>3767.54</td>
<td>34</td>
</tr>
<tr>
<td>10</td>
<td>25807.57</td>
<td>18</td>
<td>4294.97</td>
<td>6</td>
<td>30102.53</td>
<td>34</td>
</tr>
</tbody>
</table>
Algorithmic scalability for HMG+w-BFBT (increasing k)

Discretization parameters to test algorithmic scalability:

- Vary finite element order k ($Q_k \times P_{k-1}^{\text{disc}}$)
- Mesh refinement level $\ell = 5$ is fixed

Multigrid parameters for A_μ and $K_d := BC_\mu^{-1}B^\top$:

- 1 HMG V-cycle with 3+3 smoothing

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.82</td>
<td>18</td>
<td>0.13</td>
<td>7</td>
<td>0.95</td>
<td>33</td>
</tr>
<tr>
<td>3</td>
<td>2.74</td>
<td>20</td>
<td>0.32</td>
<td>8</td>
<td>3.07</td>
<td>37</td>
</tr>
<tr>
<td>4</td>
<td>6.44</td>
<td>20</td>
<td>0.66</td>
<td>7</td>
<td>7.10</td>
<td>36</td>
</tr>
<tr>
<td>5</td>
<td>12.52</td>
<td>23</td>
<td>1.15</td>
<td>12</td>
<td>13.67</td>
<td>43</td>
</tr>
<tr>
<td>6</td>
<td>21.56</td>
<td>23</td>
<td>1.84</td>
<td>12</td>
<td>23.40</td>
<td>50</td>
</tr>
<tr>
<td>7</td>
<td>34.17</td>
<td>22</td>
<td>2.75</td>
<td>10</td>
<td>36.92</td>
<td>54</td>
</tr>
<tr>
<td>8</td>
<td>50.92</td>
<td>22</td>
<td>3.93</td>
<td>10</td>
<td>54.86</td>
<td>67</td>
</tr>
</tbody>
</table>
Algorithmic scalability of nonlinear solver (decreasing h)

<table>
<thead>
<tr>
<th>Max level of refinement ℓ_{max}</th>
<th>Finest resolution [m]</th>
<th>DOF $\times 10^6$</th>
<th>Newton iterations</th>
<th>Total GMRES iterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2443</td>
<td>0.96</td>
<td>14</td>
<td>1408</td>
</tr>
<tr>
<td>11</td>
<td>1222</td>
<td>2.67</td>
<td>18</td>
<td>1160</td>
</tr>
<tr>
<td>12</td>
<td>611</td>
<td>5.58</td>
<td>21</td>
<td>1185</td>
</tr>
<tr>
<td>13</td>
<td>305</td>
<td>11.82</td>
<td>21</td>
<td>1368</td>
</tr>
<tr>
<td>14</td>
<td>153</td>
<td>36.35</td>
<td>27</td>
<td>1527</td>
</tr>
</tbody>
</table>

- Finite element order fixed at $Q_2 \times P_1^{\text{disc}}$
- Locally refined mesh with aggressive refinement at plate boundaries
- Multigrid parameters: 1 HMG V-cycle with 3+3 smoothing
Outline

Driving scientific problem & computational challenges

w-BFBT and improved robustness of over established state of the art

HMG: Hybrid spectral-geometric-algebraic multigrid

Algorithmic scalability for HMG+w-BFBT

Parallel scalability and performance for HMG+w-BFBT
Implementation optimizations for Blue Gene/Q

(A) Before optimizations

(B) Reduction of blocking MPI communication

(C) Minimization of integer operations & cache misses

(D) Optimization of element-local derivatives; SIMD vectorization

(E) OpenMP threading of matrix-free apply loops (e.g. multigrid smoothing, intergrid projection)

(F) MPI communication reduction, overlapping with computations, OpenMP threading in intergrid operators

(G) Finite element kernel optimizations (e.g. increase of flop-byte ratio, consecutive memory access, pipelining)

(H) Low-level optimizations (e.g. boundary condition enforcement, interpolation of hanging finite element nodes)
Global mantle convection problem for scalability tests

Discretization parameters to test parallel scalability:

- Finite element order $k = 2$ is fixed ($Q_k \times P_{k-1}^{\text{disc}}$)
- Vary max mesh refinement ℓ_{max} for weak scalability
- Refinement down to $\sim 75 \text{ m}$ local resolution
- Resulting mesh has 9 levels of refinement

Multigrid parameters for A_μ and K_d:

- 1 HMG V-cycle with 3+3 smoothing
Blue Gene/Q node performance in weak scaling

- **1 rack (7.5 TFlops/s):**
 - 25.9% A_μ
 - 14.1% K_d
 - 37% B/B^T
 - 3.6% Stokes
 - 8.6% Intergrid
 - 9.9% Total solve

- **32 racks (239 TFlops/s):**
 - 25.9% A_μ
 - 14% K_d
 - 37.4% B/B^T
 - 3.7% Stokes
 - 8.8% Intergrid
 - 9.1% Total solve

- **64 racks (445 TFlops/s):**
 - 25.6% A_μ
 - 13.6% K_d
 - 35.6% B/B^T
 - 3.5% Stokes
 - 9.1% Intergrid
 - 9.8% Total solve

- **96 racks (687 TFlops/s):**
 - 25.1% A_μ
 - 13.7% K_d
 - 35.7% B/B^T
 - 3.5% Stokes
 - 9.8% Intergrid
 - 9.6% Total solve

Time & GFlops/s for MatVec and intergrid operators within Stokes solves

- Highly optimized matrix-free MatVecs dominate with \(\sim 80\%\) of time
- MatVecs and intergrid times consistent across 1 to 96 racks
Extreme weak scalability for HMG+w-BFBT on Sequoia

Performed on LLNL’s Sequoia (Vulcan used for up to 65,536 cores):
IBM Blue Gene/Q architecture with 96 racks resulting in 98,304 nodes,
each node contains 16 compute cores and 16 GBytes of memory.
Extreme strong scalability for HMG + w-BFBT on Sequoia

Performed on LLNL’s Sequoia (Vulcan used for up to 65,536 cores): IBM Blue Gene/Q architecture with 96 racks resulting in 98,304 nodes, each node contains 16 compute cores and 16 GBytes of memory.
References

Preconditioning Stokes problems with variable viscosity:
- Rudi, Stadler, and Ghattas, in preparation.

Octree-based AMR and geometric multigrid on adaptive meshes:

Extreme-scale Earth mantle convection:
- Burstedde, Ghattas, Gurnis, Tan, Tu, Stadler, Wilcox, and Zhong, Proceedings of SC08 (2008), Gordon Bell finalist.
Outline

Appendix: Parallel scalability for HMG+w-BFBT on TACC’s Lonestar 5
Multi-sinker problem for scalability tests on Lonestar 5

Discretization parameters to test parallel scalability:

- Finite element order $k = 2$ is fixed ($\mathbb{Q}_k \times \mathbb{P}^\text{disc}_{k-1}$)
- Vary mesh refinement level ℓ for weak scalability

Multigrid parameters for A_μ and $K_d := BC_\mu^{-1}B^T$:

- 1 HMG V-cycle with 3+3 smoothing
Weak scalability for HMG+w-BFBT on Lonestar 5

Performed on TACC’s Lonestar 5: Cray XC40 with 1252 compute nodes, each contains 2 Intel Haswell 12-core processors and 64 GBytes of memory.
Strong scalability for HMG+w-BFBT on Lonestar 5

Performed on TACC’s Lonestar 5: Cray XC40 with 1252 compute nodes, each contains 2 Intel Haswell 12-core processors and 64 GBytes of memory.