Parallel High-Order Geometric Multigrid Methods on Adaptive Meshes for Highly Heterogeneous Nonlinear Stokes Flow Simulations of Earth’s Mantle

Johann Rudi1 Hari Sundar2 Tobin Isaac1 Georg Stadler3 Michael Gurnis4 Omar Ghattas1,5

1Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, USA
2School of Computing, The University of Utah, USA
3Courant Institute of Mathematical Sciences, New York University, USA
4Seismological Laboratory, California Institute of Technology, USA
5Jackson School of Geosciences and Department of Mechanical Engineering, The University of Texas at Austin, USA
Introduction to mantle convection & plate tectonics

Main open questions:

- Energy dissipation in hinge zones
- Main drivers of plate motion: negative buoyancy forces or convective shear traction
- Role of slab geometries
- Accuracy of rheology extrapolations from experiments

- Mantle convection is the thermal convection in the Earth’s upper \(\sim 3000 \) km
- It controls the thermal and geological evolution of the Earth
- Solid rock in the mantle moves like viscous incompressible fluid on time scales of millions of years
Our research target:

Global simulation of the Earth’s mantle convection & associated plate tectonics with realistic parameters & resolutions down to faulted plate boundaries.

Effective viscosity field and adaptive mesh resolving narrow plate boundaries (shown in red).

(Visualization by L. Alisic)
Earth’s mantle flow, modeled as a nonlinear Stokes system

\[-\nabla \cdot \left[\mu(T, u) \left(\nabla u + \nabla u^\top \right) \right] + \nabla p = f(T)\]
\[\nabla \cdot u = 0\]

\(u\) … velocity
\(p\) … pressure
\(T\) … temperature
\(\mu\) … viscosity

Effective viscosity field and adaptive mesh resolving narrow plate boundaries (shown in red).

(Visualization by L. Alisic)
What causes the demand for scalable solvers for high-order discretizations on adaptive grids? — The severe nonlinearity, heterogeneity & anisotropy of the Earth’s rheology:

- Up to 6 orders of magnitude viscosity contrast; sharp viscosity gradients due to decoupling at plate boundaries
- Wide range of spatial scales and highly localized features w.r.t. Earth radius (∼6371 km): plate thickness ∼50 km & shearing zones at plate boundaries ∼5 km
- Desired resolution of ∼1 km results in $O(10^{12})$ degrees of freedom on a uniform mesh of Earth’s mantle, so adaptive mesh refinement is essential
- Demand for high accuracy leads to high-order discretizations
Summary of main results

I. Efficient methods/algorithms

- High-order finite elements
- Adaptive meshes, resolving viscosity variations
- Geometric multigrid (GMG) preconditioners for elliptic operators
- Novel GMG based BFBT/LSC pressure Schur complement preconditioner
- Inexact Newton-Krylov method
- H^{-1}-norm for velocity residual in Newton line search

II. Scalable parallel implementation

- Matrix-free stiffness/mass application and GMG smoothing
- Tensor product structure of finite element shape functions
- Octree algorithms for handling adaptive meshes in parallel
- Algebraic multigrid (AMG) only as coarse solver for GMG avoids full AMG setup cost and large matrix assembly
- Parallel scalability results up to 16,384 CPU cores (MPI)
Results covered in this talk

I. Efficient methods/algorithms

- High-order finite elements
- Adaptive meshes, resolving viscosity variations
- Geometric multigrid (GMG) preconditioners for elliptic operators
- Novel GMG based BFBT/LSC pressure Schur complement preconditioner
- Inexact Newton-Krylov method
- H^{-1}-norm for velocity residual in Newton line search

II. Scalable parallel implementation

- Matrix-free stiffness/mass application and GMG smoothing
- Tensor product structure of finite element shape functions
- Octree algorithms for handling adaptive meshes in parallel
- Algebraic multigrid (AMG) only as coarse solver for GMG avoids full AMG setup cost and large matrix assembly
- Parallel scalability results up to 16,384 CPU cores (MPI)
Scalable parallel Stokes solver
Parallel octree-based adaptive mesh refinement (p4est)

- Identify octree leaves with hexahedral elements
- Octree structure enables fast parallel adaptive octree/mesh refinement and coarsening
- Octrees and space filling curves enable fast neighbor search, repartitioning, and 2:1 balancing in parallel
- Algebraic constraints on non-conforming element faces with hanging nodes enforce global continuity of the velocity basis functions
- Demonstrated scalability to $O(500K)$ cores (MPI)
High-order finite element discretization of the Stokes system

\[
\begin{cases}
-\nabla \cdot \left[\mu \left(\nabla u + \nabla u^\top \right) \right] + \nabla p = f \quad \text{discretize} \quad \begin{bmatrix} A & B^\top \\ B & 0 \end{bmatrix} \begin{bmatrix} u \\ p \end{bmatrix} = \begin{bmatrix} f \\ 0 \end{bmatrix}
\end{cases}
\]

- High-order finite element shape functions
- Inf-sup stable velocity-pressure pairings: $Q_k \times P_{k-1}^{\text{disc}}$ with $2 \leq k$
- Locally mass conservative due to discontinuous pressure space
- Fast, matrix-free application of stiffness and mass matrices
- Hexahedral elements allow exploiting the tensor product structure of basis functions for a high floating point to memory operations ratio
Linear solver: Preconditioned Krylov subspace method

Fully coupled iterative solver: GMRES with upper triangular block preconditioning

\[
\begin{pmatrix}
A & B^T \\
B & 0
\end{pmatrix}
\begin{pmatrix}
\tilde{A} & B^T \\
0 & -\tilde{S}
\end{pmatrix}^{-1}
\begin{pmatrix}
u' \\
p'
\end{pmatrix}
=
\begin{pmatrix}
f \\
0
\end{pmatrix}
\]

Stokes operator \hspace{2cm} preconditioner

Approximating the inverse, \(\tilde{A}^{-1} \approx A^{-1}\), is well suited for multigrid.

Inverse Schur complement approximation, \(\tilde{S}^{-1} \approx S^{-1} := (BA^{-1}B^T)^{-1}\), with improved BFBT / Least Squares Commutator (LSC) method:

\[
\tilde{S}^{-1} = (BD^{-1}B^T)^{-1}(BD^{-1}AD^{-1}B^T)(BD^{-1}B^T)^{-1}
\]

with diagonal scaling, \(D := \text{diag}(A)\). Here, approximating the inverse of the discrete pressure Laplacian, \((BD^{-1}B^T)\), is well suited for multigrid.
Stokes solver robustness with scaled BFBT Schur complement approximation
Stokes solver robustness with scaled BFBT Schur complement approximation

The subducting plate model problem on a cross section of the spherical Earth domain serves as a benchmark for solver robustness.

![Subduction model viscosity field.](image)

Multigrid parameters:
- GMG for \(\tilde{A} \): 1 V-cycle, 3+3 smooth
- AMG (PETSc’s GAMG) for \((BD^{-1}B^T)\): 3 V-cycles, 3+3 smooth
Robustness with respect to plate coupling strength

10^{-4}
(mild decoupling)

10^{-5}

10^{-6}
(strong decoupling)

Convergence for solving $Au = f$ (red), Stokes system with BFBT (blue), Stokes system with viscosity weighted mass matrix as Schur complement approximation (green) for comparison to conventional preconditioning.
Robustness with respect to plate boundary thickness

10 km

5 km

2 km

Convergence for solving $\mathbf{A}\mathbf{u} = \mathbf{f}$ (red), Stokes system with BFBT (blue), Stokes system with viscosity weighted mass matrix as Schur complement approximation (green) for comparison to conventional preconditioning.
Parallel adaptive high-order geometric multigrid
Parallel adaptive high-order geometric multigrid

The multigrid hierarchy of nested meshes is generated from an adaptively refined octree-based mesh via geometric coarsening:

- Parallel repartitioning of coarser meshes for load-balancing; repartitioning of sufficiently coarse meshes on subsets of cores
- High-order L^2-projection of coefficients onto coarser levels; re-discretization of differential eqn’s at coarser geometric multigrid levels

Multigrid hierarchy of viscous stress \tilde{A}

Multigrid for pressure Laplacian:

Geometric multigrid for the pressure Laplacian is problematic due to the discontinuous modal pressure discretization P^{disc}_{k-1}.

Here, a novel approach is taken by re-discretizing with continuous nodal Q_k basis functions.
Parallel adaptive high-order geometric multigrid

The multigrid hierarchy of nested meshes is generated from an adaptively refined octree-based mesh via geometric coarsening:

- Parallel repartitioning of coarser meshes for load-balancing; repartitioning of sufficiently coarse meshes on subsets of cores
- High-order L^2-projection of coefficients onto coarser levels; re-discretization of differential eqn’s at coarser geometric multigrid levels

Multigrid hierarchy of viscous stress \tilde{A}

Multigrid hierarchy of pressure Laplacian
Parallel adaptive high-order geometric multigrid

GMG smoother: Chebyshev accelerated Jacobi (PETSc) with matrix-free high-order stiffness apply, assembly of high-order diagonal only.

GMG restriction & interpolation: High-order L^2-projection; restriction and interpolation operators are adjoints of each other in L^2-sense.

No collective communication in GMG cycles needed; as the coarse solver for GMG, AMG (PETSc’s GAMG) is invoked on only small core counts.

Multigrid hierarchy of viscous stress \tilde{A}

1. **GMG**
2. **AMG**
3. **AMG**
4. **direct solve**

Multigrid hierarchy of pressure Laplacian

1. **GMG**
2. **AMG**
3. **AMG**
4. **direct solve**

Smoothing with $(BD^{-1}B^T)$
Parallel adaptive high-order geometric multigrid

GMG smoother for $\left(\mathbf{B} \mathbf{D}^{-1} \mathbf{B}^\top\right)$, **discontinuous modal**: Chebyshev accelerated Jacobi (PETSc) with matrix-free apply and assembled diagonal.

GMG restriction & interpolation for $\left(\mathbf{B} \mathbf{D}^{-1} \mathbf{B}^\top\right)$: L^2-projection between discontinuous modal and continuous nodal spaces.

No collective communication in GMG cycles needed; as the coarse solver for GMG, AMG (PETSc’s GAMG) is invoked on only small core counts.

Multigrid hierarchy of pressure Laplacian

- **Smoothing**: $\mathbf{B} \mathbf{D}^{-1} \mathbf{B}^\top$
- **Restriction & Interpolation**: L^2-projection
- **Hierarchy Levels**: 0, 1, 2, 3, 4
- **Solvers**: GMG, AMG, Direct solve
Convergence dependence on mesh size and discretization order
h-dependence using geometric multigrid for \tilde{A} and $(\mathbf{B}\mathbf{D}^{-1}\mathbf{B}^\top)$

The mesh is increasingly refined while the discretization stays fixed to $\mathbb{Q}_2 \times \mathbb{P}_{\text{disc}}^1$.

(Multigrid parameters:
GMG for \tilde{A}: 1 V-cycle, 3+3 smoothing;
GMG for $(\mathbf{B}\mathbf{D}^{-1}\mathbf{B}^\top)$: 1 V-cycle, 3+3 smoothing)

Solve $A\mathbf{u} = f$

Solve $(\mathbf{B}\mathbf{D}^{-1}\mathbf{B}^\top)\mathbf{p} = \mathbf{g}$

Solve Stokes system
p-dependence using geometric multigrid for \tilde{A} and $(BD^{-1}B^\top)$

The discretization order of the finite element space increases while the mesh stays fixed.

(Multigrid parameters: GMG for \tilde{A}: 1 V-cycle, 3+3 smoothing; GMG for $(BD^{-1}B^\top)$: 1 V-cycle, 3+3 smoothing)

Remark: The deteriorating Stokes convergence with increasing order is due to a deteriorating approximation of the Schur complement by the BFBT method and not the multigrid components.
Parallel scalability of geometric multigrid
Global problem on adaptive mesh of the Earth

- Viscosity is generated from real Earth data
- Heterogeneous viscosity field exhibits 6 orders of magnitude variation
- Adaptively refined mesh (p4est library) down to \(\sim 0.5 \) km local resolution; \(\mathcal{Q}_2 \times \mathbb{P}_1 \) discretization
- Distributed memory parallelization (MPI)

Stampede at the Texas Advanced Computing Center
16 CPU cores per node (2 \(\times \) 8 core Intel Xeon E5-2680)
32GB main memory per node (8 \(\times \) 4GB DDR3-1600MHz)
6,400 nodes, 102,400 cores total, InfiniBand FDR network
Weak scalability using adaptively refined Earth mesh

Normalized time* based on the setup and solve times for solving for velocity \mathbf{u} in:

$$\mathbf{A}\mathbf{u} = \mathbf{f}$$

Normalized time* relative to 2048 cores

<table>
<thead>
<tr>
<th>Number of Cores</th>
<th>$T/(N/P)$</th>
<th>$T/(N/P)/G$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2048</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4096</td>
<td>1.2</td>
<td>1.24</td>
</tr>
<tr>
<td>8192</td>
<td>0.97</td>
<td>1.15</td>
</tr>
<tr>
<td>16384</td>
<td>0.93</td>
<td>1.34</td>
</tr>
</tbody>
</table>

Normalized time* based on the setup and solve times for solving for pressure \mathbf{p} in:

$$\left(\mathbf{B}\mathbf{D}^{-1}\mathbf{B}^\top\right)\mathbf{p} = \mathbf{g}$$

Normalized time* relative to 2048 cores

<table>
<thead>
<tr>
<th>Number of Cores</th>
<th>$T/(N/P)$</th>
<th>$T/(N/P)/G$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2048</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4096</td>
<td>1.09</td>
<td>0.83</td>
</tr>
<tr>
<td>8192</td>
<td>1.08</td>
<td>0.84</td>
</tr>
<tr>
<td>16384</td>
<td>0.64</td>
<td>0.64</td>
</tr>
</tbody>
</table>

*Normalization explanation:
Scalability of algorithms & implementation: $T/(N/P)$
Scalability of implementation: $T/(N/P)/G$

T . . . setup + solve time
N . . . degrees of freedom (DOF)
P . . . number of CPU cores
G . . . number of GMRES iterations
Weak scalability using adaptively refined Earth mesh

Normalized time* based on the setup and solve times for solving for velocity \mathbf{u} in:

$$ \mathbf{A} \mathbf{u} = \mathbf{f} $$

Normalized time* relative to 2048 cores

<table>
<thead>
<tr>
<th>number of cores</th>
<th>$T/(N/P)$</th>
<th>$T/(N/P)/G$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2048</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4096</td>
<td>1.2</td>
<td>1.24</td>
</tr>
<tr>
<td>8192</td>
<td>0.97</td>
<td>1.15</td>
</tr>
<tr>
<td>16384</td>
<td>0.93</td>
<td>1.34</td>
</tr>
</tbody>
</table>

Normalized time* relative to 2048 cores

<table>
<thead>
<tr>
<th>number of cores</th>
<th>$T/(N/P)$</th>
<th>$T/(N/P)/G$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2048</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4096</td>
<td>1.09</td>
<td>0.84</td>
</tr>
<tr>
<td>8192</td>
<td>1.08</td>
<td>0.64</td>
</tr>
<tr>
<td>16384</td>
<td>1.18</td>
<td>1.18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>velocity</th>
<th>DOF</th>
<th>#levels</th>
<th>setup time</th>
<th>solve time</th>
<th>#iter</th>
</tr>
</thead>
<tbody>
<tr>
<td>2K</td>
<td>637M</td>
<td>7, 4</td>
<td>10, 14, 25</td>
<td>2298</td>
<td>402</td>
</tr>
<tr>
<td>4K</td>
<td>1155M</td>
<td>7, 4</td>
<td>13, 29, 41</td>
<td>2483</td>
<td>389</td>
</tr>
<tr>
<td>8K</td>
<td>2437M</td>
<td>8, 4</td>
<td>15, 16, 31</td>
<td>2130</td>
<td>339</td>
</tr>
<tr>
<td>16K</td>
<td>5371M</td>
<td>8, 4</td>
<td>29, 51, 80</td>
<td>2198</td>
<td>279</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pressure</th>
<th>DOF</th>
<th>#levels</th>
<th>setup time</th>
<th>solve time</th>
<th>#iter</th>
</tr>
</thead>
<tbody>
<tr>
<td>2K</td>
<td>125M</td>
<td>7, 3</td>
<td>11, 1, 12</td>
<td>857</td>
<td>125</td>
</tr>
<tr>
<td>4K</td>
<td>227M</td>
<td>7, 4</td>
<td>12, 2, 15</td>
<td>638</td>
<td>95</td>
</tr>
<tr>
<td>8K</td>
<td>482M</td>
<td>8, 3</td>
<td>18, 2, 20</td>
<td>684</td>
<td>97</td>
</tr>
<tr>
<td>16K</td>
<td>1042M</td>
<td>8, 4</td>
<td>27, 9, 36</td>
<td>546</td>
<td>68</td>
</tr>
</tbody>
</table>
Strong scalability using fixed adaptive Earth mesh

Efficiency based on the setup and solve times for solving for velocity u in:

$$Au = f$$

Efficiency based on the setup and solve times for solving for pressure p in:

$$\left(BD^{-1} B^T \right) p = g$$

<table>
<thead>
<tr>
<th>Number of cores</th>
<th>Efficiency rel. to 2K</th>
<th>Efficiency rel. to 4K</th>
<th>Efficiency rel. to 2K</th>
<th>Efficiency rel. to 4K</th>
</tr>
</thead>
<tbody>
<tr>
<td>2K</td>
<td>1</td>
<td>0.85</td>
<td>0.59</td>
<td>0.5</td>
</tr>
<tr>
<td>4K</td>
<td>1</td>
<td>0.91</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td>8K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Problem size: 637M
#iterations: 401 (±1)

<table>
<thead>
<tr>
<th>Setup time</th>
<th>Solve time</th>
</tr>
</thead>
<tbody>
<tr>
<td>geo, alg, tot</td>
<td>tot</td>
</tr>
<tr>
<td>2K</td>
<td>10, 14, 25</td>
</tr>
<tr>
<td>4K</td>
<td>9, 16, 25</td>
</tr>
<tr>
<td>8K</td>
<td>13, 27, 40</td>
</tr>
<tr>
<td>16K</td>
<td>11, 24, 36</td>
</tr>
</tbody>
</table>

Problem size: 1155M
#iterations: 388 (±1)

<table>
<thead>
<tr>
<th>Setup time</th>
<th>Solve time</th>
</tr>
</thead>
<tbody>
<tr>
<td>geo, alg, tot</td>
<td>tot</td>
</tr>
<tr>
<td>2K</td>
<td>11, 1, 12</td>
</tr>
<tr>
<td>4K</td>
<td>8, 1, 9</td>
</tr>
<tr>
<td>8K</td>
<td>8, 2, 9</td>
</tr>
<tr>
<td>16K</td>
<td>8, 2, 10</td>
</tr>
</tbody>
</table>

Problem size: 125M
#iterations: 125 (±2)

<table>
<thead>
<tr>
<th>Setup time</th>
<th>Solve time</th>
</tr>
</thead>
<tbody>
<tr>
<td>geo, alg, tot</td>
<td>tot</td>
</tr>
<tr>
<td>2K</td>
<td>12, 2, 15</td>
</tr>
<tr>
<td>4K</td>
<td>17, 10, 27</td>
</tr>
<tr>
<td>8K</td>
<td>14, 4, 18</td>
</tr>
</tbody>
</table>

Problem size: 227M
#iterations: 96 (±1)
Scalable nonlinear Stokes solver: Inexact Newton-Krylov method
Inexact Newton-Krylov method

Newton update \((\tilde{u}, \tilde{p})\):

\[-\nabla \cdot \left[\mu'(T, u) \left(\nabla \tilde{u} + \nabla \tilde{u}^\top \right) \right] + \nabla \tilde{p} = -r_{\text{mom}} \]

\[\nabla \cdot \tilde{u} = -r_{\text{mass}}\]

- Newton update is computed inexactly via Krylov subspace iterative method
- Krylov tolerance decreases with subsequent Newton steps to guarantee superlinear convergence
- Number of Newton steps is independent of the mesh size
- Velocity residual is measured in \(H^{-1}\)-norm for backtracking line search; this avoids overly conservative update steps \(\ll 1\)
- **Grid continuation** at initial Newton steps: Adaptive mesh refinement to resolve increasing viscosity variations arising from the nonlinear dependence on the velocity
Inexact Newton-Krylov method

Convergence of inexact Newton-Krylov (4096 cores)

Plate velocities at nonlinear solution.

Adaptive mesh refinements after the first four Newton steps are indicated by black vertical lines. 642M velocity & pressure DOF at solution, 473 min total runtime on 4096 cores.
Thank you
Summary of main results

I. Efficient methods/algorithms

- High-order finite elements
- Adaptive meshes, resolving viscosity variations
- Geometric multigrid (GMG) preconditioners for elliptic operators
- Novel GMG based BFBT/LSC pressure Schur complement preconditioner
- Inexact Newton-Krylov method
- H^{-1}-norm for velocity residual in Newton line search

II. Scalable parallel implementation

- Matrix-free stiffness/mass application and GMG smoothing
- Tensor product structure of finite element shape functions
- Octree algorithms for handling adaptive meshes in parallel
- Algebraic multigrid (AMG) only as coarse solver for GMG avoids full AMG setup cost and large matrix assembly
- Parallel scalability results up to 16,384 CPU cores (MPI)