μ-BFBT Preconditioner for Stokes Flow Problems with Highly Heterogeneous Viscosity

Johann Rudi1 Georg Stadler2 Omar Ghattas1,3

1Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, USA

2Courant Institute of Mathematical Sciences, New York University, USA

3Jackson School of Geosciences and Department of Mechanical Engineering, The University of Texas at Austin, USA
\textbf{\(\mu\)-BFBT: Key ideas and observations to be presented}

\[
\begin{bmatrix}
A_\mu & B^\top \\
B & 0
\end{bmatrix}
\begin{bmatrix}
A_\mu & B^\top \\
0 & \tilde{S}
\end{bmatrix}^{-1}
\begin{bmatrix}
u \\ p
\end{bmatrix} =
\begin{bmatrix}
f \\ 0
\end{bmatrix}
\]

\(\tilde{A}_\mu^{-1} \approx A_\mu^{-1}\)

\(\tilde{S}^{-1} \approx S^{-1} := (BA_\mu^{-1}B^\top)^{-1}\)

\(\tilde{S}^{-1} = \tilde{M}_p(1/\mu)^{-1}\) vs.

\(\tilde{S}^{-1} = (BD_\mu^{-1}B^\top)^{-1}(BD_\mu^{-1}A_\mu D_\mu^{-1}B^\top)(BD_\mu^{-1}B^\top)^{-1},\)

\(D_\mu = \tilde{M}_u(\sqrt{\mu})\)

![Graph showing the number of GMRES iterations vs. problem difficulty (number of sinkers)]
Outline

Driving scientific problem & computational challenges

Class of benchmark problems

μ-BFBT and improved robustness of over established state of the art

Modifications for Dirichlet boundary conditions

Algorithmic scalability for HMG+μ-BFBT

Parallel scalability for HMG+μ-BFBT
Incompressible Stokes flow with heterogeneous viscosity

Commonly occurring problem in CS&E:

Creeping non-Newtonian fluid modeled by incompressible Stokes equations with power-law rheology yields spatially-varying and highly heterogeneous viscosity μ after linearization.

Here, focus on preconditioning a linearized Stokes problem:

$$
- \nabla \cdot [\mu(x) (\nabla u + \nabla u^\top)] + \nabla p = f \\
- \nabla \cdot u = 0 \\
$$

sought: velocity u, pressure p

Discretization with inf-sub stable finite elements gives rise to the system:

$$
\begin{bmatrix}
A_{\mu} & B^\top \\
B & 0
\end{bmatrix}
\begin{bmatrix}
u \\
p
\end{bmatrix}
=
\begin{bmatrix}
f \\
0
\end{bmatrix}
$$

Iterative scheme with upper triangular block preconditioning:

$$
\begin{bmatrix}
A_{\mu} & B^\top \\
B & 0
\end{bmatrix}
\begin{bmatrix}
\tilde{A}_{\mu} & B^\top \\
0 & \tilde{S}
\end{bmatrix}^{-1}
\begin{bmatrix}
u \\
p
\end{bmatrix}
=
\begin{bmatrix}
f \\
0
\end{bmatrix}
\tilde{A}_{\mu}^{-1} \approx A_{\mu}^{-1} \\
\tilde{S}^{-1} \approx S^{-1} := (BA_{\mu}^{-1}B^\top)^{-1}
$$
Severe challenges for parallel scalable solvers

E.g., arising in Earth’s mantle convection:
► Severe nonlinearity, heterogeneity, and anisotropy of the Earth’s rheology
► Sharp viscosity gradients in narrow regions (6 orders of magnitude drop in ~ 5 km)
► Wide range of spatial scales and highly localized features, e.g., plate boundaries of size $\mathcal{O}(1 \text{ km})$ influence plate motion at continental scales of $\mathcal{O}(1000 \text{ km})$
► Adaptive mesh refinement is essential
► High-order finite elements with local mass conservation is crucial; yields a difficult to deal with discontinuous pressure approximation

Viscosity (colors), surface velocity at sol. (arrows), and locally refined mesh.
Methods and preconditioners for the linearized Stokes problem:

- **µ-BFBT inverse Schur complement approximation** achieves robust convergence for Stokes problems with highly heterogeneous viscosity.
- **HMG: hybrid spectral-geometric-algebraic multigrid** exhibits extreme parallel scalability & (nearly) optimal algorithmic scalability, used for preconditioning viscous block \tilde{A}_μ^{-1} and inside μ-BFBT via V-cycles.
- Inf-sup stable velocity-pressure discretization $\mathbb{Q}_k \times \mathbb{P}^{\text{disc}}_k$, order $k \geq 2$.
- Mass conservation at element level via discontinuous, modal pressure.

Simplifications are made for the sake of clear analysis and wide applicability, but solver development targets Earth’s M.C. as application.

- Simple viscosity formulation vs. complicated nonlinear Earth rheology.
- Undeformed cube domain vs. spherical shell.
- Uniformly refined mesh vs. aggressively locally refined.
Outline

Driving scientific problem & computational challenges

Class of benchmark problems

\(\mu\)-BFBT and improved robustness of over established state of the art

Modifications for Dirichlet boundary conditions

Algorithmic scalability for HMG + \(\mu\)-BFBT

Parallel scalability for HMG + \(\mu\)-BFBT
Class of multi-sinker benchmark problems

Vary 2 viscosity parameters to test robustness:

- Local param.: #sinkers \(n \) at random points \(c_i \)
- Global param.: \(\text{DR}(\mu) := \max(\mu)/\min(\mu) \)

\[
\mu(x) := (\mu_{\text{max}} - \mu_{\text{min}})(1 - \chi_n(x)) + \mu_{\text{min}}
\]

\[
\mu_{\text{min}} := \text{DR}(\mu)^{-\frac{1}{2}}, \quad \mu_{\text{max}} := \text{DR}(\mu)^{\frac{1}{2}}
\]

\[
\chi_n(x) := \prod_{i=1}^{n} 1 - \exp \left[-d \max \left(0, |c_i - x| - \frac{w}{2} \right)^2 \right]
\]

\[
f(x) := b(1 - \chi_n(x)), \quad \text{(where } b, d, w \text{ const.)}
\]

Vary 2 discretization parameters to test algorithmic scalability:

- Finite element order \(k \) (recall: \(\mathbb{Q}_k \times \mathbb{P}_{k-1}^{\text{disc}} \))
- Mesh refinement level \(\ell \)

Viscosity (colors) with highest value (blue) assumed inside sinkers, and streamlines of nonlocal velocity field.
Outline

Driving scientific problem & computational challenges

Class of benchmark problems

μ-BFBT and improved robustness of over established state of the art

Modifications for Dirichlet boundary conditions

Algorithmic scalability for HMG+μ-BFBT

Parallel scalability for HMG+μ-BFBT
Propose: μ-BFBT inverse Schur complement approx.

\[
\begin{bmatrix}
A_\mu & B^T \\
B & 0
\end{bmatrix}
\begin{bmatrix}
\tilde{A}_\mu & B^T \\
0 & \tilde{S}
\end{bmatrix}^{-1}
\begin{bmatrix}
u \\
p
\end{bmatrix} =
\begin{bmatrix}
f \\
0
\end{bmatrix}
\]

$\tilde{A}_\mu^{-1} \approx A_\mu^{-1}$

$\tilde{S}^{-1} \approx S^{-1} := (BA_\mu^{-1}B^T)^{-1}$
Propose: μ-BFBT inverse Schur complement approx.

$$\begin{bmatrix} A_\mu & B^\top \\ B & 0 \end{bmatrix} \begin{bmatrix} \tilde{A}_\mu & B^\top \\ 0 & \tilde{S} \end{bmatrix}^{-1} \begin{bmatrix} u \\ p \end{bmatrix} = \begin{bmatrix} f \\ 0 \end{bmatrix} \quad \tilde{A}_\mu^{-1} \approx A_\mu^{-1} \quad \tilde{S}^{-1} \approx S^{-1} := (BA_\mu^{-1}B^\top)^{-1}$$

Underlying principle of BFBT / Least Squares Commutators (LSC):
find a commutator matrix X s.t. (denote unit vectors by e_j)

$$A_\mu D^{-1}B^\top - B^\top X \approx 0 \quad \text{or} \quad \min_X \left\| A_\mu D^{-1}B^\top e_j - B^\top X e_j \right\|_{C^{-1}}^2 \quad \forall j$$

$$\Rightarrow \quad \tilde{S}_{\text{BFBT}}^{-1} := \left(BC^{-1}B^\top \right)^{-1} \left(BC^{-1}A_\mu D^{-1}B^\top \right) \left(BD^{-1}B^\top \right)^{-1}$$

Choice of matrices C, D is critical for convergence and robustness.
Propose: μ-BFBT inverse Schur complement approx.

\[
\begin{bmatrix}
A_\mu & B^T \\
B & 0
\end{bmatrix}
\begin{bmatrix}
\tilde{A}_\mu & B^T \\
0 & \tilde{S}
\end{bmatrix}^{-1}
\begin{bmatrix}
u \\
p
\end{bmatrix} =
\begin{bmatrix}
f \\
0
\end{bmatrix}
\tilde{A}_\mu^{-1} \approx A_\mu^{-1}
\tilde{S}^{-1} \approx S^{-1} := (B A_\mu^{-1} B^T)^{-1}
\]

Underlying principle of BFBT / Least Squares Commutators (LSC): find a commutator matrix X s.t. (denote unit vectors by e_j)

\[
A_\mu D^{-1} B^T - B^T X \approx 0 \quad \text{or} \quad \min_X \| A_\mu D^{-1} B^T e_j - B^T X e_j \|_C^{-1} \quad \forall j
\]

\[
\Rightarrow \tilde{S}^{-1}_{\text{BFBT}} := \left(B C^{-1} B^T \right)^{-1} \left(B C^{-1} A_\mu D^{-1} B^T \right) \left(B D^{-1} B^T \right)^{-1}
\]

Choice of matrices C, D is critical for convergence and robustness.

\[
\tilde{S}^{-1}_{\mu-\text{BFBT}} := \left(B C_\mu^{-1} B^T \right)^{-1} \left(B C_\mu^{-1} A_\mu D_\mu^{-1} B^T \right) \left(B D_\mu^{-1} B^T \right)^{-1}
\]

where $C_\mu = D_\mu := \tilde{M}_u(\sqrt{\mu})$ are responsible for efficacy and robustness.
Robustness of μ-BFBT over established state of the art

![Graph showing comparison between $M_p(1/\mu)$ and μ-BFBT for varying problem difficulty (number of sinkers)].

<table>
<thead>
<tr>
<th>Problem difficulty (number of sinkers)</th>
<th>$M_p(1/\mu)$ ($k = 2, \ell = 7$)</th>
<th>μ-BFBT ($k = 2, \ell = 7$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1-rand</td>
<td>10^4 29 31 31 29</td>
<td>S1-rand 29 29 29 29 30</td>
</tr>
<tr>
<td>S8-rand</td>
<td>10^6 64 79 93 165</td>
<td>S8-rand 38 40 41 44 44</td>
</tr>
<tr>
<td>S16-rand</td>
<td>10^8 85 167 231 891</td>
<td>S16-rand 40 45 47 48 48</td>
</tr>
<tr>
<td>S24-rand</td>
<td>10^{10} 117 286 3279 5983</td>
<td>S24-rand 31 32 39 55 55</td>
</tr>
<tr>
<td>S28-rand</td>
<td>10^{10} 108 499 2472 >10000</td>
<td>S28-rand 29 31 42 60 60</td>
</tr>
</tbody>
</table>
Eigenvalue/-vector analysis for system $Sp = g$ in 2D

Spectrum of exact and preconditioned Schur complement (markers), #GMRES iter. with eigenvector components of rel. residual $> 10^{-2}$ (circles/colors)

#sinkers = 4, $\text{DR}(\mu) = 10^4$, $k = 2, \ell = 4$
Outline

Driving scientific problem & computational challenges

Class of benchmark problems

μ-BFBT and improved robustness of over established state of the art

Modifications for Dirichlet boundary conditions

Algorithmic scalability for HMG+μ-BFBT

Parallel scalability for HMG+μ-BFBT
Modifications for Dirichlet boundary conditions

Consider $\Omega = \mathbb{R}^3$, $\mu \equiv 1$, then the discrete commutator

$$AM_u^{-1}B^\top - B^\top X$$

vanishes in infinite dimensions:

$$0 = (\nabla \cdot \nabla)\nabla - \nabla(\nabla \cdot \nabla) =: A_uB^* - B^*A_p$$

However, if Ω is bounded and Dirichlet BC’s are enforced on $\partial \Omega$, then in general

$$A_uB^* - B^*A_p \neq 0 \quad \text{on } \partial \Omega$$

This poses a problem for algorithmic scalability, i.e., maintained convergence rate for increasing k and ℓ; similar observations are made in [Elman, Tuminaro, 2009] for Navier-Stokes equations.
Modifications for Dirichlet boundary conditions

Recall: \(\tilde{S}^{-1}_{\mu-\text{BFBT}} = \left(BC^{-1}_\mu B^T \right)^{-1} \left(BC^{-1}_\mu A_\mu D^{-1}_\mu B^T \right) \left(BD^{-1}_\mu B^T \right)^{-1} \)

\[w_{\mu,a}(x) := \begin{cases} a \sqrt{\mu(x)} & x \in \Omega_D, \\ \sqrt{\mu(x)} & x \notin \Omega_D, \end{cases} \quad \Omega_D = \text{elems. touching Dirichlet bdr.} \]

Choose \(a_C \geq 1 \) in \(C^{-1}_\mu = \tilde{M}_u (w_{\mu,a_C})^{-1} \), \(a_D \geq 1 \) in \(D^{-1}_\mu = \tilde{M}_u (w_{\mu,a_D})^{-1} \)

Interpretation: Reduce weight of \(\Omega_D \) in commutator relationship.

\[
\begin{array}{ccccccc}
\hline
a_C \setminus a_D & 1 & 2 & 4 & 8 & 16 & 32 \\
\hline
1 & 33 & 33 & 34 & 34 & 34 & 35 \\
2 & 33 & 33 & 34 & 34 & 34 & 34 \\
4 & 33 & 34 & 34 & 36 & 38 & 39 \\
8 & 34 & 34 & 36 & 39 & 43 & 44 \\
16 & 34 & 34 & 38 & 43 & 46 & 49 \\
32 & 34 & 34 & 39 & 44 & 49 & 53 \\
\hline
\end{array}
\]

\[
\begin{array}{ccccccc}
\hline
a_C \setminus a_D & 1 & 2 & 4 & 8 & 16 & 32 \\
\hline
1 & 45 & 37 & 34 & 34 & 34 & 34 \\
2 & 37 & 36 & 35 & 36 & 36 & 36 \\
4 & 34 & 36 & 38 & 39 & 40 & 41 \\
8 & 34 & 36 & 39 & 42 & 44 & 44 \\
16 & 34 & 36 & 40 & 44 & 45 & 46 \\
32 & 34 & 36 & 41 & 44 & 46 & 47 \\
\hline
\end{array}
\]
"µ-BFBT Preconditioner for Stokes Flow Problems" by Johann Rudi

Modifications for Dirichlet boundary conditions

Recall: \(\tilde{S}_\mu^{-1} - BFBT = \left(BC_\mu^{-1} B^T \right)^{-1} \left(BC_\mu^{-1} A_\mu D_\mu^{-1} B^T \right) \left(BD_\mu^{-1} B^T \right)^{-1} \)

\[
w_{\mu,a}(x) := \begin{cases} \frac{a \sqrt{\mu(x)}}{\sqrt{\mu(x)}} & x \in \Omega_D, \\ \frac{\sqrt{\mu(x)}}{\mu(x)} & x \notin \Omega_D, \end{cases}
\]

\(\Omega_D = \) elems. touching Dirichlet bdr.

Choose \(a_C \geq 1 \) in \(C_\mu^{-1} = \tilde{M}_u(w_{\mu,a_C})^{-1} \), \(a_D \geq 1 \) in \(D_\mu^{-1} = \tilde{M}_u(w_{\mu,a_D})^{-1} \)

Interpretation: Reduce weight of \(\Omega_D \) in commutator relationship.

<table>
<thead>
<tr>
<th>(a_C \setminus a_D)</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>33</td>
<td>33</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>35</td>
</tr>
<tr>
<td>2</td>
<td>33</td>
<td>33</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>4</td>
<td>33</td>
<td>34</td>
<td>34</td>
<td>36</td>
<td>38</td>
<td>39</td>
</tr>
<tr>
<td>8</td>
<td>34</td>
<td>34</td>
<td>36</td>
<td>39</td>
<td>43</td>
<td>44</td>
</tr>
<tr>
<td>16</td>
<td>34</td>
<td>34</td>
<td>38</td>
<td>43</td>
<td>46</td>
<td>49</td>
</tr>
<tr>
<td>32</td>
<td>34</td>
<td>34</td>
<td>39</td>
<td>44</td>
<td>49</td>
<td>53</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(a_C \setminus a_D)</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>63</td>
<td>53</td>
<td>46</td>
<td>43</td>
<td>43</td>
<td>44</td>
</tr>
<tr>
<td>2</td>
<td>53</td>
<td>51</td>
<td>51</td>
<td>51</td>
<td>52</td>
<td>53</td>
</tr>
<tr>
<td>4</td>
<td>47</td>
<td>51</td>
<td>55</td>
<td>59</td>
<td>62</td>
<td>64</td>
</tr>
<tr>
<td>8</td>
<td>44</td>
<td>51</td>
<td>65</td>
<td>69</td>
<td>75</td>
<td>78</td>
</tr>
<tr>
<td>16</td>
<td>43</td>
<td>52</td>
<td>62</td>
<td>69</td>
<td>75</td>
<td>78</td>
</tr>
<tr>
<td>32</td>
<td>44</td>
<td>53</td>
<td>64</td>
<td>72</td>
<td>78</td>
<td>82</td>
</tr>
</tbody>
</table>
Outline

Driving scientific problem & computational challenges

Class of benchmark problems

μ-BFBT and improved robustness of over established state of the art

Modifications for Dirichlet boundary conditions

Algorithmic scalability for HMG + μ-BFBT

Parallel scalability for HMG + μ-BFBT
Algorithmic scalability for HMG + μ-BFBT

pressure space
- **discont. modal**
- **cont. nodal**
 - high-order F.E.
 - trilinear F.E.
 - decreasing #cores
- #cores < 1000
- small MPI communicator
- single core

spectral p-coarsening
- geometric h-coarsening
- algebraic coars.

HMG: hybrid spectral-geometric-algebraic multigrid

- **Parallel repartitioning** of coarser meshes for load-balancing (crucial for AMR); sufficiently coarse meshes occupy only subsets of cores

- **High-order L^2-projection** onto coarser levels; restriction & interpolation are adjoints of each other in L^2-sense

- **Chebyshev accelerated Jacobi smoother** (Cheb. from PETSc) with tensorized matrix-free high-order stiffness apply; assembly of high-order diagonal only
Algorithmic scalability for HMG + μ-BFBT

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>0.11</td>
<td>18</td>
<td>0.02</td>
<td>8</td>
<td>0.12</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>0.82</td>
<td>18</td>
<td>0.13</td>
<td>7</td>
<td>0.95</td>
<td>33</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>6.44</td>
<td>18</td>
<td>1.05</td>
<td>6</td>
<td>7.49</td>
<td>33</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>50.92</td>
<td>18</td>
<td>8.39</td>
<td>6</td>
<td>59.31</td>
<td>34</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>405.02</td>
<td>18</td>
<td>67.11</td>
<td>6</td>
<td>472.12</td>
<td>34</td>
</tr>
<tr>
<td>9</td>
<td>32</td>
<td>3230.67</td>
<td>18</td>
<td>536.87</td>
<td>6</td>
<td>3767.54</td>
<td>34</td>
</tr>
<tr>
<td>10</td>
<td>64</td>
<td>25807.57</td>
<td>18</td>
<td>4294.97</td>
<td>6</td>
<td>30102.53</td>
<td>34</td>
</tr>
</tbody>
</table>
Algorithmic scalability for HMG + μ-BFBT

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>0.82</td>
<td>18</td>
<td>0.13</td>
<td>7</td>
<td>0.95</td>
<td>33</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>2.74</td>
<td>20</td>
<td>0.32</td>
<td>8</td>
<td>3.07</td>
<td>37</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>6.44</td>
<td>20</td>
<td>0.66</td>
<td>7</td>
<td>7.10</td>
<td>36</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>12.52</td>
<td>23</td>
<td>1.15</td>
<td>12</td>
<td>13.67</td>
<td>43</td>
</tr>
<tr>
<td>6</td>
<td>32</td>
<td>21.56</td>
<td>23</td>
<td>1.84</td>
<td>12</td>
<td>23.40</td>
<td>50</td>
</tr>
<tr>
<td>7</td>
<td>64</td>
<td>34.17</td>
<td>22</td>
<td>2.75</td>
<td>10</td>
<td>36.92</td>
<td>54</td>
</tr>
<tr>
<td>8</td>
<td>128</td>
<td>50.92</td>
<td>22</td>
<td>3.93</td>
<td>10</td>
<td>54.86</td>
<td>67</td>
</tr>
</tbody>
</table>
Outline

Driving scientific problem & computational challenges

Class of benchmark problems

μ-BFBT and improved robustness of over established state of the art

Modifications for Dirichlet boundary conditions

Algorithmic scalability for HMG+μ-BFBT

Parallel scalability for HMG+μ-BFBT
Weekly scalability for HMG + μ-BFBT

Perform on TACC's Lonestar 5: Cray XC40 with 1252 compute nodes, each has 2 Intel Haswell 12-core processors and 64 GBytes of memory.

Extreme scalability for Earth's M.C. on up to 1.6 million cores of IBM's BG/Q: 97% weak efficiency [SC'15 Gordon Bell paper: Rudi, Malossi, Isaac et al., 2015]
Performed on TACC’s Lonestar 5: Cray XC40 with 1252 compute nodes, each has 2 Intel Haswell 12-core processors and 64 GBytes of memory.

Extreme scalability for Earth’s M.C. on up to 1.6 million cores of IBM’s BG/Q: 32% strong efficiency [SC’15 Gordon Bell paper: Rudi, Malossi, Isaac et al., 2015]
"μ-BFBT Preconditioner for Stokes Flow Problems" by Johann Rudi

References

Viscosity-weighted pressure mass matrix for Stokes:

BFBT for Navier-Stokes:

BFBT for Stokes: