[1] D. Kamensky, M.-C. Hsu, Y. Yu, J. A. Evans, M. S. Sacks, and T. J. R. Hughes, “Immersogeometric cardiovascular fluid–structure interaction analysis with divergence-conforming B-splines,” *Computer Methods in Applied Mechanics and Engineering*, vol. 314, pp. 408–472, Feb. 2017. https://www.sciencedirect.com/science/article/pii/S0045782516308015

[2] H. Zhu, N. Petra, G. Stadler, T. Isaac, T. J. R. Hughes, and O. Ghattas, “Inversion of geothermal heat flux in a thermomechanically coupled nonlinear Stokes ice sheet model,” *The Cryosphere*, vol. 10, no. 4, pp. 1477–1494, Jul. 2016. http://www.the-cryosphere.net/10/1477/2016/

[3] X. Wei, Y. J. Zhang, T. J. R. Hughes, and M. A. Scott, “Extended Truncated Hierarchical Catmull–Clark Subdivision,” *Computer Methods in Applied Mechanics and Engineering*, vol. 299, pp. 316–336, Feb. 2016. https://www.sciencedirect.com/science/article/pii/S0045782515003618

[4] X. Wei, Y. Zhang, L. Liu, and T. J. R. Hughes, “Truncated T-splines: Fundamentals and methods,” *Computer Methods in Applied Mechanics and Engineering*, Jul. 2016. https://www.sciencedirect.com/science/article/pii/S004578251630771X

[5] D. Toshniwal, H. Speleers, R. R. Hiemstra, and T. J. R. Hughes, “Multi-degree smooth polar splines: A framework for geometric modeling and isogeometric analysis,” *Computer Methods in Applied Mechanics and Engineering*, Nov. 2016. https://www.sciencedirect.com/science/article/pii/S004578251631533X

[6] M. Taus, G. J. Rodin, and T. J. R. Hughes, “Isogeometric analysis of boundary integral equations: High-order collocation methods for the singular and hyper-singular equations,” *Math. Models Methods Appl. Sci.*, vol. 26, no. 8, pp. 1447–1480, Apr. 2016. http://www.worldscientific.com/doi/abs/10.1142/S0218202516500354

[7] A. A. Oberai and T. J. R. Hughes, “A palette of fine-scale eddy viscosity and residual-based models for variational multiscale formulations of turbulence,” *Comput Mech*, vol. 57, no. 4, pp. 629–635, Apr. 2016. http://link.springer.com/article/10.1007/s00466-015-1242-2

[8] G. Lorenzo, M. A. Scott, K. Tew, T. J. R. Hughes, Y. J. Zhang, L. Liu, G. Vilanova, and H. Gomez, “Tissue-scale, personalized modeling and simulation of prostate cancer growth,” *PNAS*, vol. 113, no. 48, pp. E7663–E7671, Nov. 2016. http://www.pnas.org/content/113/48/E7663

[9] R. R. Hiemstra, F. Calabrò, D. Schillinger, and T. J. R. Hughes, “Optimal and reduced quadrature rules for tensor product and hierarchically refined splines in isogeometric analysis,” *Computer Methods in Applied Mechanics and Engineering*, Nov. 2016. https://www.sciencedirect.com/science/article/pii/S004578251631489X

[10] M. J. Borden, T. J. R. Hughes, C. M. Landis, A. Anvari, and I. J. Lee, “A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and stress triaxiality effects,” *Computer Methods in Applied Mechanics and Engineering*, vol. 312, pp. 130–166, Dec. 2016. https://www.sciencedirect.com/science/article/pii/S0045782516311069

[11] X. Wei, Y. Zhang, T. J. R. Hughes, and M. A. Scott, “Truncated hierarchical Catmull–Clark subdivision with local refinement,” *Computer Methods in Applied Mechanics and Engineering*, vol. 291, pp. 1–20, Jul. 2015. http://www.sciencedirect.com/science/article/pii/S0045782515001292

[12] D. Schillinger, J. A. Evans, F. Frischmann, R. R. Hiemstra, M.-C. Hsu, and T. J. R. Hughes, “A collocated C0 finite element method: Reduced quadrature perspective, cost comparison with standard finite elements, and explicit structural dynamics,” *Int. J. Numer. Meth. Engng*, vol. 102, no. 3–4, pp. 576–631, Apr. 2015. http://onlinelibrary.wiley.com/doi/10.1002/nme.4783/abstract

[13] S. Morganti, F. Auricchio, D. J. Benson, F. I. Gambarin, S. Hartmann, T. J. R. Hughes, and A. Reali, “Patient-specific isogeometric structural analysis of aortic valve closure,” *Computer Methods in Applied Mechanics and Engineering*, vol. 284, pp. 508–520, Feb. 2015. http://www.sciencedirect.com/science/article/pii/S0045782514003806

[14] J. Liu, C. M. Landis, H. Gomez, and T. J. R. Hughes, “Liquid–vapor phase transition: Thermomechanical theory, entropy stable numerical formulation, and boiling simulations,” *Computer Methods in Applied Mechanics and Engineering*, vol. 297, pp. 476–553, Dec. 2015. https://www.sciencedirect.com/science/article/pii/S0045782515003011

[15] R. Kruse, N. Nguyen-Thanh, L. De Lorenzis, and T. J. R. Hughes, “Isogeometric collocation for large deformation elasticity and frictional contact problems,” *Computer Methods in Applied Mechanics and Engineering*, vol. 296, pp. 73–112, Nov. 2015. https://www.sciencedirect.com/science/article/pii/S0045782515002406

[16] J. Kiendl, F. Auricchio, T. J. R. Hughes, and A. Reali, “Single-variable formulations and isogeometric discretizations for shear deformable beams,” *Computer Methods in Applied Mechanics and Engineering*, vol. 284, pp. 988–1004, Feb. 2015. http://www.sciencedirect.com/science/article/pii/S0045782514004368

[17] D. Kamensky, M.-C. Hsu, D. Schillinger, J. A. Evans, A. Aggarwal, Y. Bazilevs, M. S. Sacks, and T. J. R. Hughes, “An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves,” *Computer Methods in Applied Mechanics and Engineering*, vol. 284, pp. 1005–1053, Feb. 2015. http://www.sciencedirect.com/science/article/pii/S0045782514004101

[18] S. S. Hossain, Y. Zhang, X. Fu, G. Brunner, J. Singh, T. J. R. Hughes, D. Shah, and P. Decuzzi, “Magnetic resonance imaging-based computational modelling of blood flow and nanomedicine deposition in patients with peripheral arterial disease,” *Journal of The Royal Society Interface*, vol. 12, no. 106, p. 20150001, May 2015. http://rsif.royalsocietypublishing.org/content/12/106/20150001

[19] L. De Lorenzis, J. A. Evans, T. J. R. Hughes, and A. Reali, “Isogeometric collocation: Neumann boundary conditions and contact,” *Computer Methods in Applied Mechanics and Engineering*, vol. 284, pp. 21–54, Feb. 2015. http://www.sciencedirect.com/science/article/pii/S004578251400245X

[20] L. Beirão Da Veiga, T. J. R. Hughes, J. Kiendl, C. Lovadina, J. Niiranen, A. Reali, and H. Speleers, “A locking-free model for Reissner–Mindlin plates: Analysis and isogeometric implementation via NURBS and triangular NURPS,” *Math. Models Methods Appl. Sci.*, vol. 25, no. 8, pp. 1519–1551, Feb. 2015. http://www.worldscientific.com/doi/abs/10.1142/S0218202515500402

[21] C. Adam, T. J. R. Hughes, S. Bouabdallah, M. Zarroug, and H. Maitournam, “Selective and reduced numerical integrations for NURBS-based isogeometric analysis,” *Computer Methods in Applied Mechanics and Engineering*, vol. 284, pp. 732–761, Feb. 2015. http://www.sciencedirect.com/science/article/pii/S0045782514004228

[22] D. Schillinger, S. J. Hossain, and T. J. R. Hughes, “Reduced Bézier element quadrature rules for quadratic and cubic splines in isogeometric analysis,” *Computer Methods in Applied Mechanics and Engineering*, vol. 277, pp. 1–45, Aug. 2014. http://www.sciencedirect.com/science/article/pii/S0045782514001339

[23] A. A. Oberai, J. Liu, D. Sondak, and T. J. R. Hughes, “A residual based eddy viscosity model for the large eddy simulation of turbulent flows,” *Computer Methods in Applied Mechanics and Engineering*, vol. 282, pp. 54–70, Dec. 2014. http://www.sciencedirect.com/science/article/pii/S0045782514002849

[24] T. J. R. Hughes, “Amplitude–phase decompositions and the growth and decay of solutions of the incompressible Navier–Stokes and Euler equations,” *Math. Models Methods Appl. Sci.*, vol. 24, no. 5, pp. 1017–1035, May 2014. http://www.worldscientific.com/doi/abs/10.1142/S0218202513500759

[25] T. J. R. Hughes, J. A. Evans, and A. Reali, “Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems,” *Computer Methods in Applied Mechanics and Engineering*, vol. 272, pp. 290–320, Apr. 2014. http://www.sciencedirect.com/science/article/pii/S0045782513003071

[26] M.-C. Hsu, D. Kamensky, Y. Bazilevs, M. S. Sacks, and T. J. R. Hughes, “Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation,” *Comput Mech*, vol. 54, no. 4, pp. 1055–1071, Oct. 2014. http://link.springer.com/article/10.1007/s00466-014-1059-4

[27] A. I. Ginnis, K. V. Kostas, C. G. Politis, P. D. Kaklis, K. A. Belibassakis, T. P. Gerostathis, M. A. Scott, and T. J. R. Hughes, “Isogeometric boundary-element analysis for the wave-resistance problem using T-splines,” *Computer Methods in Applied Mechanics and Engineering*, vol. 279, pp. 425–439, Sep. 2014. http://www.sciencedirect.com/science/article/pii/S0045782514002230

[28] T. Elguedj and T. J. R. Hughes, “Isogeometric analysis of nearly incompressible large strain plasticity,” *Computer Methods in Applied Mechanics and Engineering*, vol. 268, pp. 388–416, Jan. 2014. http://www.sciencedirect.com/science/article/pii/S004578251300251X

[29] L. De Lorenzis, P. Wriggers, and T. J. R. Hughes, “Isogeometric contact: a review,” *GAMM-Mitteilungen*, vol. 37, no. 1, pp. 85–123, 2014. http://onlinelibrary.wiley.com/doi/10.1002/gamm.201410005/abstract

[30] M. J. Borden, T. J. R. Hughes, C. M. Landis, and C. V. Verhoosel, “A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework,” *Computer Methods in Applied Mechanics and Engineering*, vol. 273, pp. 100–118, May 2014. http://www.sciencedirect.com/science/article/pii/S0045782514000292

[31] G. Bao, Y. Bazilevs, J.-H. Chung, P. Decuzzi, H. D. Espinosa, M. Ferrari, H. Gao, S. S. Hossain, T. J. R. Hughes, R. D. Kamm, W. K. Liu, A. Marsden, and B. Schrefler, “USNCTAM perspectives on mechanics in medicine,” *Journal of The Royal Society Interface*, vol. 11, no. 97, p. 20140301, Aug. 2014. http://rsif.royalsocietypublishing.org/content/11/97/20140301

[32] Y. Zhang, W. Wang, and T. J. R. Hughes, “Conformal solid T-spline construction from boundary T-spline representations,” *Comput Mech*, vol. 51, no. 6, pp. 1051–1059, Jun. 2013. http://link.springer.com/article/10.1007/s00466-012-0787-6

[33] W. Wang, Y. Zhang, L. Liu, and T. J. R. Hughes, “Trivariate solid T-spline construction from boundary triangulations with arbitrary genus topology,” *Computer-Aided Design*, vol. 45, no. 2, pp. 351–360, Feb. 2013. http://www.sciencedirect.com/science/article/pii/S0010448512002230

[34] M. A. Scott, R. N. Simpson, J. A. Evans, S. Lipton, S. P. A. Bordas, T. J. R. Hughes, and T. W. Sederberg, “Isogeometric boundary element analysis using unstructured T-splines,” *Computer Methods in Applied Mechanics and Engineering*, vol. 254, pp. 197–221, Feb. 2013. http://www.sciencedirect.com/science/article/pii/S0045782512003386

[35] D. Schillinger, J. A. Evans, A. Reali, M. A. Scott, and T. J. R. Hughes, “Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations,” *Computer Methods in Applied Mechanics and Engineering*, vol. 267, pp. 170–232, Dec. 2013. http://www.sciencedirect.com/science/article/pii/S004578251300193X

[36] L. Liu, Y. Zhang, T. J. R. Hughes, M. A. Scott, and T. W. Sederberg, “Volumetric T-spline construction using Boolean operations,” *Engineering with Computers*, vol. 30, no. 4, pp. 425–439, Nov. 2013. http://link.springer.com/article/10.1007/s00366-013-0346-6

[37] J. Liu, H. Gomez, J. A. Evans, T. J. R. Hughes, and C. M. Landis, “Functional entropy variables: A new methodology for deriving thermodynamically consistent algorithms for complex fluids, with particular reference to the isothermal Navier–Stokes–Korteweg equations,” *Journal of Computational Physics*, vol. 248, pp. 47–86, Sep. 2013. http://www.sciencedirect.com/science/article/pii/S0021999113002544

[38] J. Liu, L. Dedè, J. A. Evans, M. J. Borden, and T. J. R. Hughes, “Isogeometric analysis of the advective Cahn–Hilliard equation: Spinodal decomposition under shear flow,” *Journal of Computational Physics*, vol. 242, pp. 321–350, Jun. 2013. http://www.sciencedirect.com/science/article/pii/S0021999113001186

[39] S. S. Hossain, T. J. R. Hughes, and P. Decuzzi, “Vascular Deposition Patterns for Catheter-Injected Nanoparticles in an Inflamed Patient-specific Arterial Tree,” *Biomechanics and Modeling in Mechanobiology*, Aug. 2013. http://link.springer.com/article/10.1007%2Fs10237-013-0520-1

[40] Y. Ghaffari Motlagh, H. T. Ahn, T. J. R. Hughes, and V. M. Calo, “Simulation of laminar and turbulent concentric pipe flows with the isogeometric variational multiscale method,” *Computers & Fluids*, vol. 71, pp. 146–155, Jan. 2013. http://www.sciencedirect.com/science/article/pii/S0045793012003507

[41] J. A. Evans and T. J. R. Hughes, “Isogeometric Divergence-conforming B-splines for the Unsteady Navier-Stokes Equations,” *Journal of Computational Physics*, 2013. http://www.sciencedirect.com/science/article/pii/S0021999113000363

[42] J. A. Evans and T. J. R. Hughes, “ISOGEOMETRIC DIVERGENCE-CONFORMING B-SPLINES FOR THE DARCY–STOKES–BRINKMAN EQUATIONS,” *Mathematical Models and Methods in Applied Sciences*, vol. 23, no. 4, pp. 671–741, Apr. 2013. http://www.worldscientific.com/doi/abs/10.1142/S0218202512500583

[43] J. A. Evans and T. J. R. Hughes, “Explicit trace inequalities for isogeometric analysis and parametric hexahedral finite elements,” *Numer. Math.*, vol. 123, no. 2, pp. 259–290, Feb. 2013. http://link.springer.com/article/10.1007/s00211-012-0484-6

[44] D. J. Benson, S. Hartmann, Y. Bazilevs, M.-C. Hsu, and T. J. R. Hughes, “Blended isogeometric shells,” *Computer Methods in Applied Mechanics and Engineering*, vol. 255, pp. 133–146, Mar. 2013. http://www.sciencedirect.com/science/article/pii/S0045782512003696

[45] W. Wang, Y. Zhang, G. Xu, and T. J. R. Hughes, “Converting an unstructured quadrilateral/hexahedral mesh to a rational T-spline,” *Comput Mech*, vol. 50, no. 1, pp. 65–84, Jul. 2012. http://link.springer.com/article/10.1007/s00466-011-0674-6

[46] İ. Temizer, P. Wriggers, and T. J. R. Hughes, “Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS,” *Computer Methods in Applied Mechanics and Engineering*, vol. 209–212, pp. 115–128, Feb. 2012. http://www.sciencedirect.com/science/article/pii/S0045782511003355

[47] M. A. Scott, X. Li, T. W. Sederberg, and T. J. R. Hughes, “Local refinement of analysis-suitable T-splines,” *Computer Methods in Applied Mechanics and Engineering*, vol. 213–216, pp. 206–222, Mar. 2012. http://www.sciencedirect.com/science/article/pii/S0045782511003689

[48] D. Schillinger, L. Dedè, M. A. Scott, J. A. Evans, M. J. Borden, E. Rank, and T. J. R. Hughes, “An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces,” *Computer Methods in Applied Mechanics and Engineering*, vol. 249–252, pp. 116–150, Dec. 2012. http://www.sciencedirect.com/science/article/pii/S004578251200093X

[49] H. A. F. A. Santos, J. A. Evans, and T. J. R. Hughes, “Generalization of the twist-Kirchhoff theory of plate elements to arbitrary quadrilaterals and assessment of convergence,” *Computer Methods in Applied Mechanics and Engineering*, vol. 209–212, pp. 101–114, Feb. 2012. http://www.sciencedirect.com/science/article/pii/S0045782511002738

[50] N. Petra, H. Zhu, G. Stadler, T. J. R. Hughes, and O. Ghattas, “An inexact GaussNewton method for inversion of basal sliding and rheology parameters in a nonlinear Stokes ice sheet model,” *Journal of Glaciology*, vol. 58, no. 211, pp. 889–903, 2012. https://www.igsoc.org/journal/58/211/t11J182.html

[51] X. Li, J. Zheng, T. W. Sederberg, T. J. R. Hughes, and M. A. Scott, “On linear independence of T-spline blending functions,” *Computer Aided Geometric Design*, vol. 29, no. 1, pp. 63–76, Jan. 2012. http://www.sciencedirect.com/science/article/pii/S0167839611000938

[52] S. S. Hossain, Y. Zhang, X. Liang, F. Hussain, M. Ferrari, T. J. Hughes, and P. Decuzzi, “In silico vascular modeling for personalized nanoparticle delivery,” *Nanomedicine (Lond)*, Dec. 2012. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3909646/

[53] S. S. Hossain, S. F. A. Hossainy, Y. Bazilevs, V. M. Calo, and T. J. R. Hughes, “Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls,” *Comput Mech*, vol. 49, no. 2, pp. 213–242, Feb. 2012. http://link.springer.com/article/10.1007/s00466-011-0633-2

[54] J. A. Evans and T. J. R. Hughes, “ISOGEOMETRIC DIVERGENCE-CONFORMING B-SPLINES FOR THE STEADY NAVIER–STOKES EQUATIONS,” *Mathematical Models and Methods in Applied Sciences*, pp. 1–58, Nov. 2012. http://www.worldscientific.com/doi/abs/10.1142/S0218202513500139

[55] J. A. Evans and T. J. R. Hughes, “Discrete spectrum analyses for various mixed discretizations of the Stokes eigenproblem,” *Comput Mech*, vol. 50, no. 6, pp. 667–674, Dec. 2012. http://link.springer.com/article/10.1007/s00466-012-0788-5

[56] R. Duddu, L. L. Lavier, T. J. R. Hughes, and V. M. Calo, “A finite strain Eulerian formulation for compressible and nearly incompressible hyperelasticity using high-order B-spline finite elements,” *International Journal for Numerical Methods in Engineering*, vol. 89, no. 6, pp. 762–785, 2012. http://onlinelibrary.wiley.com/doi/10.1002/nme.3262/abstract

[57] L. Dedè, M. J. Borden, and T. J. R. Hughes, “Isogeometric Analysis for Topology Optimization with a Phase Field Model,” *Arch Computat Methods Eng*, vol. 19, no. 3, pp. 427–465, Sep. 2012. http://link.springer.com/article/10.1007/s11831-012-9075-z

[58] K. Chang, T. J. R. Hughes, and V. M. Calo, “Isogeometric variational multiscale large-eddy simulation of fully-developed turbulent flow over a wavy wall,” *Computers & Fluids*, vol. 68, pp. 94–104, Sep. 2012. http://www.sciencedirect.com/science/article/pii/S0045793012002320

[59] M. J. Borden, C. V. Verhoosel, M. A. Scott, T. J. R. Hughes, and C. M. Landis, “A phase-field description of dynamic brittle fracture,” *Computer Methods in Applied Mechanics and Engineering*, vol. 217–220, pp. 77–95, Apr. 2012. http://www.sciencedirect.com/science/article/pii/S0045782512000199

[60] F. Auricchio, F. Calabrò, T. J. R. Hughes, A. Reali, and G. Sangalli, “A simple algorithm for obtaining nearly optimal quadrature rules for NURBS-based isogeometric analysis,” *Computer Methods in Applied Mechanics and Engineering*, vol. 249–252, pp. 15–27, Dec. 2012. http://www.sciencedirect.com/science/article/pii/S004578251200134X

[61] F. Auricchio, L. Beirão da Veiga, T. J. R. Hughes, A. Reali, and G. Sangalli, “Isogeometric collocation for elastostatics and explicit dynamics,” *Computer Methods in Applied Mechanics and Engineering*, vol. 249–252, pp. 2–14, Dec. 2012. http://www.sciencedirect.com/science/article/pii/S0045782512001028

[62] W. Wang, Y. Zhang, M. A. Scott, and T. J. R. Hughes, “Converting an unstructured quadrilateral mesh to a standard T-spline surface,” *Comput Mech*, vol. 48, no. 4, pp. 477–498, Oct. 2011. http://link.springer.com/article/10.1007/s00466-011-0598-1

[63] C. V. Verhoosel, M. A. Scott, T. J. R. Hughes, and R. de Borst, “An isogeometric analysis approach to gradient damage models,” *Int. J. Numer. Meth. Engng.*, vol. 86, no. 1, pp. 115–134, Apr. 2011. http://onlinelibrary.wiley.com/doi/10.1002/nme.3150/abstract

[64] C. V. Verhoosel, M. A. Scott, R. de Borst, and T. J. R. Hughes, “An isogeometric approach to cohesive zone modeling,” *Int. J. Numer. Meth. Engng.*, vol. 87, no. 1–5, pp. 336–360, Jul. 2011. http://onlinelibrary.wiley.com/doi/10.1002/nme.3061/abstract

[65] İ. Temizer, P. Wriggers, and T. J. R. Hughes, “Contact treatment in isogeometric analysis with NURBS,” *Computer Methods in Applied Mechanics and Engineering*, vol. 200, no. 9–12, pp. 1100–1112, Feb. 2011. http://www.sciencedirect.com/science/article/pii/S0045782510003440

[66] M. A. Scott, M. J. Borden, C. V. Verhoosel, T. W. Sederberg, and T. J. R. Hughes, “Isogeometric finite element data structures based on Bézier extraction of T-splines,” *Int. J. Numer. Meth. Engng.*, vol. 88, no. 2, pp. 126–156, Oct. 2011. http://onlinelibrary.wiley.com/doi/10.1002/nme.3167/abstract

[67] H. Gomez, “Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models,” *Journal of Computational Physics*, vol. 230, no. 13, pp. 5310–5327, Jun. 2011. http://www.sciencedirect.com/science/article/pii/S0021999111001847

[68] F. Brezzi, J. A. Evans, T. J. R. Hughes, and L. D. Marini, “New rectangular plate elements based on twist-Kirchhoff theory,” *Computer Methods in Applied Mechanics and Engineering*, vol. 200, no. 33–36, pp. 2547–2561, Aug. 2011. http://www.sciencedirect.com/science/article/pii/S0045782511001459

[69] M. J. Borden, M. A. Scott, J. A. Evans, and T. J. R. Hughes, “Isogeometric finite element data structures based on Bézier extraction of NURBS,” *Int. J. Numer. Meth. Engng.*, vol. 87, no. 1–5, pp. 15–47, Jul. 2011. http://onlinelibrary.wiley.com/doi/10.1002/nme.2968/abstract

[70] D. J. Benson, Y. Bazilevs, M.-C. Hsu, and T. J. R. Hughes, “A large deformation, rotation-free, isogeometric shell,” *Computer Methods in Applied Mechanics and Engineering*, vol. 200, no. 13–16, pp. 1367–1378, Mar. 2011. http://www.sciencedirect.com/science/article/pii/S0045782510003488

[71] Y. Zhang, T. J. R. Hughes, and C. L. Bajaj, “An automatic 3D mesh generation method for domains with multiple materials,” *Computer Methods in Applied Mechanics and Engineering*, vol. 199, no. 5–8, pp. 405–415, Jan. 2010. http://www.sciencedirect.com/science/article/pii/S004578250900214X

[72] S. Lipton, J. A. Evans, Y. Bazilevs, T. Elguedj, and T. J. R. Hughes, “Robustness of isogeometric structural discretizations under severe mesh distortion,” *Computer Methods in Applied Mechanics and Engineering*, vol. 199, no. 5–8, pp. 357–373, Jan. 2010. http://www.sciencedirect.com/science/article/pii/S0045782509000346

[73] T. J. R. Hughes, A. Reali, and G. Sangalli, “Efficient quadrature for NURBS-based isogeometric analysis,” *Computer Methods in Applied Mechanics and Engineering*, vol. 199, no. 5–8, pp. 301–313, Jan. 2010. http://www.sciencedirect.com/science/article/pii/S0045782508004295

[74] T. J. R. Hughes, G. Scovazzi, and T. E. Tezduyar, “Stabilized Methods for Compressible Flows,” *J Sci Comput*, vol. 43, no. 3, pp. 343–368, Jun. 2010. http://link.springer.com/article/10.1007/s10915-008-9233-5

[75] M.-C. Hsu, Y. Bazilevs, V. M. Calo, T. E. Tezduyar, and T. J. R. Hughes, “Improving stability of stabilized and multiscale formulations in flow simulations at small time steps,” *Computer Methods in Applied Mechanics and Engineering*, vol. 199, no. 13–16, pp. 828–840, Feb. 2010. http://www.sciencedirect.com/science/article/pii/S0045782509002254

[76] H. Gomez, T. J. R. Hughes, X. Nogueira, and V. M. Calo, “Isogeometric analysis of the isothermal Navier–Stokes–Korteweg equations,” *Computer Methods in Applied Mechanics and Engineering*, vol. 199, no. 25–28, pp. 1828–1840, May 2010. http://www.sciencedirect.com/science/article/pii/S004578251000068X

[77] D. J. Benson, Y. Bazilevs, M. C. Hsu, and T. J. R. Hughes, “Isogeometric shell analysis: The Reissner–Mindlin shell,” *Computer Methods in Applied Mechanics and Engineering*, vol. 199, no. 5–8, pp. 276–289, Jan. 2010. http://www.sciencedirect.com/science/article/pii/S0045782509001820

[78] D. J. Benson, Y. Bazilevs, E. De Luycker, M.-C. Hsu, M. Scott, T. J. R. Hughes, and T. Belytschko, “A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM,” *International Journal for Numerical Methods in Engineering*, vol. 83, no. 6, pp. 765–785, 2010. http://onlinelibrary.wiley.com/doi/10.1002/nme.2864/abstract

[79] Y. Bazilevs, C. Michler, V. M. Calo, and T. J. R. Hughes, “Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes,” *Computer Methods in Applied Mechanics and Engineering*, vol. 199, no. 13–16, pp. 780–790, Feb. 2010. http://www.sciencedirect.com/science/article/pii/S0045782508004052

[80] Y. Bazilevs, V. M. Calo, J. A. Cottrell, J. A. Evans, T. J. R. Hughes, S. Lipton, M. A. Scott, and T. W. Sederberg, “Isogeometric analysis using T-splines,” *Computer Methods in Applied Mechanics and Engineering*, vol. 199, no. 5–8, pp. 229–263, Jan. 2010. http://www.sciencedirect.com/science/article/pii/S0045782509000875

[81] F. Auricchio, L. B. Da Veiga, T. J. R. Hughes, A. Reali, and G. Sangalli, “ISOGEOMETRIC COLLOCATION METHODS,” *Mathematical Models and Methods in Applied Sciences*, vol. 20, no. 11, pp. 2075–2107, Nov. 2010. http://www.worldscientific.com/doi/abs/10.1142/S0218202510004878

[82] H. J. Kim, C. A. Figueroa, T. J. R. Hughes, K. E. Jansen, and C. A. Taylor, “Augmented Lagrangian method for constraining the shape of velocity profiles at outlet boundaries for three-dimensional finite element simulations of blood flow,” *Computer Methods in Applied Mechanics and Engineering*, vol. 198, no. 45–46, pp. 3551–3566, Sep. 2009. http://www.sciencedirect.com/science/article/pii/S0045782509000887

[83] J. A. Evans, T. J. R. Hughes, and G. Sangalli, “Enforcement of constraints and maximum principles in the variational multiscale method,” *Computer Methods in Applied Mechanics and Engineering*, vol. 199, no. 1–4, pp. 61–76, Dec. 2009. http://www.sciencedirect.com/science/article/pii/S004578250900317X

[84] J. A. Evans, Y. Bazilevs, I. Babuška, and T. J. R. Hughes, “n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method,” *Computer Methods in Applied Mechanics and Engineering*, vol. 198, no. 21–26, pp. 1726–1741, May 2009. http://www.sciencedirect.com/science/article/pii/S0045782509000280

[85] Y. Bazilevs, J. R. Gohean, T. J. R. Hughes, R. D. Moser, and Y. Zhang, “Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device,” *Computer Methods in Applied Mechanics and Engineering*, vol. 198, no. 45–46, pp. 3534–3550, Sep. 2009. http://www.sciencedirect.com/science/article/pii/S0045782509001674

[86] T. J. R. Hughes, A. Reali, and G. Sangalli, “Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS,” *Computer Methods in Applied Mechanics and Engineering*, vol. 197, no. 49–50, pp. 4104–4124, Sep. 2008. http://www.sciencedirect.com/science/article/pii/S0045782508001618

[87] H. Gómez, V. M. Calo, Y. Bazilevs, and T. J. R. Hughes, “Isogeometric analysis of the Cahn–Hilliard phase-field model,” *Computer Methods in Applied Mechanics and Engineering*, vol. 197, no. 49–50, pp. 4333–4352, Sep. 2008. http://www.sciencedirect.com/science/article/pii/S0045782508001953

[88] T. Elguedj, Y. Bazilevs, V. M. Calo, and T. J. R. Hughes, “F-bar projection method for finite deformation elasticity and plasticity using NURBS based isogeometric analysis,” *Int J Mater Form*, vol. 1, no. 1, pp. 1091–1094, Apr. 2008. http://link.springer.com/article/10.1007/s12289-008-0209-7

[89] T. Elguedj, Y. Bazilevs, V. M. Calo, and T. J. R. Hughes, “B-bar and F-bar projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements,” *Computer Methods in Applied Mechanics and Engineering*, vol. 197, no. 33–40, pp. 2732–2762, Jun. 2008. http://www.sciencedirect.com/science/article/pii/S0045782508000248

[90] V. M. Calo, N. F. Brasher, Y. Bazilevs, and T. J. R. Hughes, “Multiphysics model for blood flow and drug transport with application to patient-specific coronary artery flow,” *Comput Mech*, vol. 43, no. 1, pp. 161–177, Dec. 2008. http://link.springer.com/article/10.1007/s00466-008-0321-z

[91] Y. Bazilevs and T. J. R. Hughes, “NURBS-based isogeometric analysis for the computation of flows about rotating components,” *Comput Mech*, vol. 43, no. 1, pp. 143–150, Dec. 2008. http://link.springer.com/article/10.1007/s00466-008-0277-z

[92] Y. Bazilevs, V. M. Calo, T. J. R. Hughes, and Y. Zhang, “Isogeometric fluid-structure interaction: theory, algorithms, and computations,” *Comput Mech*, vol. 43, no. 1, pp. 3–37, Dec. 2008. http://link.springer.com/article/10.1007/s00466-008-0315-x

[93] I. Akkerman, Y. Bazilevs, V. M. Calo, T. J. R. Hughes, and S. Hulshoff, “The role of continuity in residual-based variational multiscale modeling of turbulence,” *Comput Mech*, vol. 41, no. 3, pp. 371–378, Feb. 2008. http://link.springer.com/article/10.1007/s00466-007-0193-7

[94] Y. Zhang, Y. Bazilevs, S. Goswami, C. L. Bajaj, and T. J. R. Hughes, “Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow,” *Computer Methods in Applied Mechanics and Engineering*, vol. 196, no. 29–30, pp. 2943–2959, May 2007. http://www.sciencedirect.com/science/article/pii/S0045782507000801

[95] G. Scovazzi, M. A. Christon, T. J. R. Hughes, and J. N. Shadid, “Stabilized shock hydrodynamics: I. A Lagrangian method,” *Computer Methods in Applied Mechanics and Engineering*, vol. 196, no. 4–6, pp. 923–966, Jan. 2007. http://www.sciencedirect.com/science/article/pii/S0045782506002374

[96] T. J. R. Hughes and G. Sangalli, “Variational Multiscale Analysis: the Fine‐scale Green’s Function, Projection, Optimization, Localization, and Stabilized Methods,” *SIAM Journal on Numerical Analysis*, vol. 45, no. 2, pp. 539–557, Jan. 2007. http://epubs.siam.org/doi/abs/10.1137/050645646

[97] J. A. Cottrell, T. J. R. Hughes, and A. Reali, “Studies of refinement and continuity in isogeometric structural analysis,” *Computer Methods in Applied Mechanics and Engineering*, vol. 196, no. 41–44, pp. 4160–4183, Sep. 2007. http://www.sciencedirect.com/science/article/pii/S0045782507001703

[98] Y. Bazilevs, C. Michler, V. M. Calo, and T. J. R. Hughes, “Weak Dirichlet boundary conditions for wall-bounded turbulent flows,” *Computer Methods in Applied Mechanics and Engineering*, vol. 196, no. 49–52, pp. 4853–4862, Nov. 2007. http://www.sciencedirect.com/science/article/pii/S0045782507002885

[99] Y. Bazilevs and T. J. R. Hughes, “Weak imposition of Dirichlet boundary conditions in fluid mechanics,” *Computers & Fluids*, vol. 36, no. 1, pp. 12–26, Jan. 2007. http://www.sciencedirect.com/science/article/pii/S0045793005001258

[100] Y. Bazilevs, V. M. Calo, T. E. Tezduyar, and T. J. R. Hughes, “YZβ discontinuity capturing for advection-dominated processes with application to arterial drug delivery,” *International Journal for Numerical Methods in Fluids*, vol. 54, no. 6–8, pp. 593–608, 2007. http://onlinelibrary.wiley.com/doi/10.1002/fld.1484/abstract

[101] Y. Bazilevs, V. M. Calo, J. A. Cottrell, T. J. R. Hughes, A. Reali, and G. Scovazzi, “Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows,” *Computer Methods in Applied Mechanics and Engineering*, vol. 197, no. 1–4, pp. 173–201, Dec. 2007. http://www.sciencedirect.com/science/article/pii/S0045782507003027

[102] T. J. R. Hughes and G. N. Wells, “Erratum to ‘Conservation properties for the Galerkin and stabilised forms of the advection–diffusion and incompressible Navier–Stokes equations’ [Comput. Methods Appl. Mech. Engrg. 194 (2005) 1141–1159],” *Computer Methods in Applied Mechanics and Engineering*, vol. 195, no. 9–12, pp. 1277–1278, Feb. 2006. http://www.sciencedirect.com/science/article/pii/S0045782505001416

[103] T. J. R. Hughes, G. Scovazzi, P. B. Bochev, and A. Buffa, “A multiscale discontinuous Galerkin method with the computational structure of a continuous Galerkin method,” *Computer Methods in Applied Mechanics and Engineering*, vol. 195, no. 19–22, pp. 2761–2787, Apr. 2006. http://www.sciencedirect.com/science/article/pii/S0045782505002288

[104] T. J. R. Hughes, A. Masud, and J. Wan, “A stabilized mixed discontinuous Galerkin method for Darcy flow,” *Computer Methods in Applied Mechanics and Engineering*, vol. 195, no. 25–28, pp. 3347–3381, May 2006. http://www.sciencedirect.com/science/article/pii/S0045782505002732

[105] C. A. Figueroa, I. E. Vignon-Clementel, K. E. Jansen, T. J. R. Hughes, and C. A. Taylor, “A coupled momentum method for modeling blood flow in three-dimensional deformable arteries,” *Computer Methods in Applied Mechanics and Engineering*, vol. 195, no. 41–43, pp. 5685–5706, Aug. 2006. http://www.sciencedirect.com/science/article/pii/S004578250500513X

[106] J. A. Cottrell, A. Reali, Y. Bazilevs, and T. J. R. Hughes, “Isogeometric analysis of structural vibrations,” *Computer Methods in Applied Mechanics and Engineering*, vol. 195, no. 41–43, pp. 5257–5296, Aug. 2006. http://www.sciencedirect.com/science/article/pii/S0045782505005451

[107] A. Buffa, T. J. R. Hughes, and G. Sangalli, “Analysis of a Multiscale Discontinuous Galerkin Method for Convection‐Diffusion Problems,” *SIAM Journal on Numerical Analysis*, vol. 44, no. 4, pp. 1420–1440, Jan. 2006. http://epubs.siam.org/doi/abs/10.1137/050640382

[108] Y. Bazilevs, V. M. Calo, Y. Zhang, and T. J. R. Hughes, “Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow,” *Comput Mech*, vol. 38, no. 4–5, pp. 310–322, Sep. 2006. http://link.springer.com/article/10.1007/s00466-006-0084-3

[109] Y. Bazilevs, L. Beirão da Veiga, J. A. Cottrell, T. J. R. Hughes, and G. Sangalli, “Isogeometric analysis: approximation, stability and error estimates for h-refined meshes,” *Mathematical Models and Methods in Applied Sciences*, vol. 16, no. 7, pp. 1031–1090, 2006. http://www.worldscientific.com/doi/abs/10.1142/S0218202506001455

[110] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs, “Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement,” *Computer Methods in Applied Mechanics and Engineering*, vol. 194, no. 39–41, pp. 4135–4195, Oct. 2005. http://www.sciencedirect.com/science/article/pii/S0045782504005171

[111] T. J. R. Hughes and G. N. Wells, “Conservation properties for the Galerkin and stabilised forms of the advection–diffusion and incompressible Navier–Stokes equations,” *Computer Methods in Applied Mechanics and Engineering*, vol. 194, no. 9–11, pp. 1141–1159, Mar. 2005. http://www.sciencedirect.com/science/article/pii/S0045782504003172

[112] F. Brezzi, T. J. R. Hughes, L. D. Marini, and A. Masud, “Mixed Discontinuous Galerkin Methods for Darcy Flow,” *J Sci Comput*, vol. 22–23, no. 1–3, pp. 119–145, Jun. 2005. http://link.springer.com/article/10.1007/s10915-004-4150-8

[113] T. J. R. Hughes, G. N. Wells, and A. A. Wray, “Energy transfers and spectral eddy viscosity in large-eddy simulations of homogeneous isotropic turbulence: Comparison of dynamic Smagorinsky and multiscale models over a range of discretizations,” *Physics of Fluids*, vol. 16, no. 11, pp. 4044–4052, Oct. 2004. http://aip.scitation.org/doi/abs/10.1063/1.1789157

[114] T. J. R. Hughes, J. Tinsley Oden, and M. Papadrakakis, “In memoriam to Professor John H. Argyris: 19 August 1913 – 2 April 2004,” *Computer Methods in Applied Mechanics and Engineering*, vol. 193, no. 36–38, pp. 3763–3766, Sep. 2004. http://www.sciencedirect.com/science/article/pii/S0045782504002361

[115] J. Holmen, T. J. R. Hughes, A. A. Oberai, and G. N. Wells, “Sensitivity of the scale partition for variational multiscale large-eddy simulation of channel flow,” *Physics of Fluids*, vol. 16, no. 3, pp. 824–827, Feb. 2004. http://aip.scitation.org/doi/abs/10.1063/1.1644573

[116] B. N. Steele, J. Wan, J. P. Ku, T. J. R. Hughes, and C. A. Taylor, “In vivo validation of a one-dimensional finite-element method for predicting blood flow in cardiovascular bypass grafts,” *IEEE Transactions on Biomedical Engineering*, vol. 50, no. 6, pp. 649–656, Jun. 2003. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1203803&queryText%3DIn+vivo+validation+of+a+one-dimensional+finite-element+method+for+predicting+blood+flow+in+cardiovascular+bypass+grafts

[117] J. T. Oden, T. Belytschko, I. Babuska, and T. J. R. Hughes, “Research directions in computational mechanics,” *Computer Methods in Applied Mechanics and Engineering*, vol. 192, no. 7–8, pp. 913–922, Feb. 2003. http://www.sciencedirect.com/science/article/pii/S0045782502006163

[118] T. J. R. Hughes and A. A. Oberai, “Calculation of shear stresses in the Fourier–Galerkin formulation of turbulent channel flows: projection, the Dirichlet filter and conservation,” *Journal of Computational Physics*, vol. 188, no. 1, pp. 281–295, Jun. 2003. http://www.sciencedirect.com/science/article/pii/S0021999103001670

[119] J. Wan, B. Steele, S. A. Spicer, S. Strohband, G. R. Feijo´o, T. J. R. Hughes, and C. A. Taylor, “A One-dimensional Finite Element Method for Simulation-based Medical Planning for Cardiovascular Disease,” *Computer Methods in Biomechanics and Biomedical Engineering*, vol. 5, no. 3, pp. 195–206, 2002. http://www.tandfonline.com/doi/abs/10.1080/10255840290010670

[120] A. A. Oberai, F. Roknaldin, and T. J. R. Hughes, “Computation of Trailing-Edge Noise Due to Turbulent Flow over an Airfoil,” *AIAA Journal*, vol. 40, no. 11, pp. 2206–2216, Nov. 2002. http://arc.aiaa.org/doi/abs/10.2514/2.1582

[121] A. Masud and T. J. R. Hughes, “A stabilized mixed finite element method for Darcy flow,” *Computer Methods in Applied Mechanics and Engineering*, vol. 191, no. 39–40, pp. 4341–4370, Aug. 2002. http://www.sciencedirect.com/science/article/pii/S0045782502003717

[122] G. Engel, K. Garikipati, T. J. R. Hughes, M. G. Larson, L. Mazzei, and R. L. Taylor, “Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity,” *Computer Methods in Applied Mechanics and Engineering*, vol. 191, no. 34, pp. 3669–3750, Jul. 2002. http://www.sciencedirect.com/science/article/pii/S0045782502002864

[123] M. T. Draney, R. J. Herfkens, T. J. R. Hughes, N. J. Pelc, K. L. Wedding, C. K. Zarins, and C. A. Taylor, “Quantification of Vessel Wall Cyclic Strain Using Cine Phase Contrast Magnetic Resonance Imaging,” *Annals of Biomedical Engineering*, vol. 30, no. 8, pp. 1033–1045, Sep. 2002. http://link.springer.com/article/10.1114/1.1513566

[124] T. J. R. Hughes, A. A. Oberai, and L. Mazzei, “Large eddy simulation of turbulent channel flows by the variational multiscale method,” *Physics of Fluids*, vol. 13, no. 6, pp. 1784–1799, Jun. 2001. http://aip.scitation.org/doi/abs/10.1063/1.1367868

[125] T. J. R. Hughes, L. Mazzei, A. A. Oberai, and A. A. Wray, “The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence,” *Physics of Fluids*, vol. 13, no. 2, pp. 505–512, Feb. 2001. http://aip.scitation.org/doi/10.1063/1.1332391

[126] F. Brezzi, T. J. R. Hughes, and E. Suli, “Variational approximation of flux in conforming finite element methods for elliptic partial differential equations: A model problem,” *Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica E Applicazioni*, vol. 12, no. 3, pp. 159–166, 2001. http://users.ices.utexas.edu/~hughes/photo-album/2001_brezzi_variationalappr.pdf

[127] S. M. Rifai, J. C. Buell, Z. Johan, and T. J. R. Hughes, “Automotive design applications of fluid flow simulation on parallel computing platforms,” *Computer Methods in Applied Mechanics and Engineering*, vol. 184, no. 2–4, pp. 449–466, Apr. 2000. http://www.sciencedirect.com/science/article/pii/S004578259900239X

[128] V. S. Rao and T. J. R. Hughes, “On modelling thermal oxidation of Silicon I: theory,” *International Journal for Numerical Methods in Engineering*, vol. 47, no. 1–3, pp. 341–358, 2000. http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-0207(20000110/30)47:1/3<341::AID-NME774>3.0.CO;2-Z/abstract

[129] V. S. Rao, T. J. R. Hughes, and K. Garikipati, “On modelling thermal oxidation of Silicon II: numerical aspects,” *International Journal for Numerical Methods in Engineering*, vol. 47, no. 1–3, pp. 359–377, 2000. http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-0207(20000110/30)47:1/3<359::AID-NME775>3.0.CO;2-7/abstract

[130] A. A. Oberai, F. Roknaldin, and T. J. . Hughes, “Computational procedures for determining structural-acoustic response due to hydrodynamic sources,” *Computer Methods in Applied Mechanics and Engineering*, vol. 190, no. 3–4, pp. 345–361, Oct. 2000. http://www.sciencedirect.com/science/article/pii/S0045782500002061

[131] T. J. R. Hughes, L. Mazzei, and K. E. Jansen, “Large Eddy Simulation and the variational multiscale method,” *Comput Visual Sci*, vol. 3, no. 1–2, pp. 47–59, May 2000. http://link.springer.com/article/10.1007/s007910050051

[132] T. J. R. Hughes and K. Garikipati, “Embedding a Micromechanical Law in the Continuum Formulation: A Multiscale Approach Applied to Discontinuous Solutions,” *International Journal for Computational Civil and Structural Engineering*, vol. 1, pp. 64–78, 2000. http://users.ices.utexas.edu/~hughes/photo-album/2000_garikipati_embeddingam.pdf

[133] T. J. R. Hughes, G. Engel, L. Mazzei, and M. G. Larson, “The continuous Galerkin method is locally conservative,” *J. Comput. Phys.*, vol. 163, no. 2, pp. 467–488, Sep. 2000. http://dx.doi.org/10.1006/jcph.2000.6577

[134] K. Garikipati and T. J. R. Hughes, “A variational multiscale approach to strain localization – formulation for multidimensional problems,” *Computer Methods in Applied Mechanics and Engineering*, vol. 188, no. 1–3, pp. 39–60, Jul. 2000. http://www.sciencedirect.com/science/article/pii/S0045782599001565

[135] C. A. Taylor, T. J. R. Hughes, and C. K. Zarins, “Effect of exercise on hemodynamic conditions in the abdominal aorta,” *Journal of Vascular Surgery*, vol. 29, no. 6, pp. 1077–1089, Jun. 1999. http://www.sciencedirect.com/science/article/pii/S0741521499702491

[136] S. M. Rifai, Z. Johan, W.-P. Wang, J.-P. Grisval, T. J. R. Hughes, and R. M. Ferencz, “Multiphysics simulation of flow-induced vibrations and aeroelasticity on parallel computing platforms,” *Computer Methods in Applied Mechanics and Engineering*, vol. 174, no. 3–4, pp. 393–417, May 1999. http://www.sciencedirect.com/science/article/pii/S0045782598003065

[137] F. Brezzi, T. J. R. Hughes, L. D. Marini, A. Russo, and E. Süli, “A Priori Error Analysis of Residual-Free Bubbles for Advection-Diffusion Problems,” *SIAM Journal on Numerical Analysis*, vol. 36, no. 6, pp. 1933–1948, Jan. 1999. http://epubs.siam.org/doi/abs/10.1137/S0036142998342367

[138] C. A. Taylor, T. J. R. Hughes, and C. K. Zarins, “Finite Element Modeling of Three-Dimensional Pulsatile Flow in the Abdominal Aorta: Relevance to Atherosclerosis,” *Annals of Biomedical Engineering*, vol. 26, no. 6, pp. 975–987, Nov. 1998. http://link.springer.com/article/10.1114/1.140

[139] C. A. Taylor, T. J. R. Hughes, and C. K. Zarins, “Finite element modeling of blood flow in arteries,” *Computer Methods in Applied Mechanics and Engineering*, vol. 158, no. 1–2, pp. 155–196, May 1998. http://www.sciencedirect.com/science/article/pii/S004578259880008X

[140] J. R. Stewart and T. J. . Hughes, “A tutorial in elementary finite element error analysis: A systematic presentation of a priori and a posteriori error estimates,” *Computer Methods in Applied Mechanics and Engineering*, vol. 158, no. 1–2, pp. 1–22, May 1998. http://www.sciencedirect.com/science/article/pii/S0045782597002302

[141] M. OSHIMA, T. J. R. HUGHES, and K. JANSEN, “Consistent Finite Element Calculations of Boundary and Internal Fluxes,” *International Journal of Computational Fluid Dynamics*, vol. 9, no. 3–4, pp. 227–235, 1998. http://www.tandfonline.com/doi/abs/10.1080/10618569808940855

[142] T. J. R. Hughes, G. R. Feijóo, L. Mazzei, and J.-B. Quincy, “The variational multiscale method—a paradigm for computational mechanics,” *Computer Methods in Applied Mechanics and Engineering*, vol. 166, no. 1–2, pp. 3–24, Nov. 1998. http://www.sciencedirect.com/science/article/pii/S0045782598000796

[143] G. Hauke and T. J. R. Hughes, “A comparative study of different sets of variables for solving compressible and incompressible flows,” *Computer Methods in Applied Mechanics and Engineering*, vol. 153, no. 1–2, pp. 1–44, Jan. 1998. http://www.sciencedirect.com/science/article/pii/S0045782597000431

[144] K. Garikipati and T. J. R. Hughes, “A study of strain localization in a multiple scale framework—The one-dimensional problem,” *Computer Methods in Applied Mechanics and Engineering*, vol. 159, no. 3–4, pp. 193–222, Jul. 1998. http://www.sciencedirect.com/science/article/pii/S0045782597002715

[145] J. R. Stewart and T. J. . Hughes, “h-Adaptive finite element computation of time-harmonic exterior acoustics problems in two dimensions,” *Computer Methods in Applied Mechanics and Engineering*, vol. 146, no. 1–2, pp. 65–89, Jul. 1997. http://www.sciencedirect.com/science/article/pii/S004578259601225X

[146] J. R. Stewart and T. J. R. Hughes, “An a posteriori error estimator and hp-adaptive strategy for finite element discretizations of the Helmholtz equation in exterior domains,” *Finite Elements in Analysis and Design*, vol. 25, no. 1–2, pp. 1–26, Mar. 1997. http://www.sciencedirect.com/science/article/pii/S0168874X96000595

[147] A. Masud and T. J. R. Hughes, “A space-time Galerkin/least-squares finite element formulation of the Navier-Stokes equations for moving domain problems,” *Computer Methods in Applied Mechanics and Engineering*, vol. 146, no. 1–2, pp. 91–126, Jul. 1997. http://www.sciencedirect.com/science/article/pii/S0045782596012224

[148] M. Eldredge, T. J. R. Hughes, R. M. Ferencz, S. M. Rifai, A. Raefsky, and B. Herndon, “High-performance parallel computing in industry,” *Parallel Computing*, vol. 23, no. 9, pp. 1217–1233, Sep. 1997. http://www.sciencedirect.com/science/article/pii/S0167819197000495

[149] F. Brezzi, L. P. Franca, T. J. R. Hughes, and A. Russo, “b = ∝ g,” *Computer Methods in Applied Mechanics and Engineering*, vol. 145, no. 3–4, pp. 329–339, Jun. 1997. http://www.sciencedirect.com/science/article/pii/S0045782596012212

[150] C. A. Taylor, T. J. R. Hughes, and C. K. Zarins, “Computational investigations in vascular disease,” *Comput. Phys.*, vol. 10, no. 3, pp. 224–232, Jun. 1996. http://dl.acm.org/citation.cfm?id=229737.229751

[151] J. R. Stewart and T. J. R. Hughes, “Explicit residual-based a posteriori error estimation for finite element discretizations of the Helmholtz equation: Computation of the constant and new measures of error estimator quality,” *Computer Methods in Applied Mechanics and Engineering*, vol. 131, no. 3–4, pp. 335–363, May 1996. http://www.sciencedirect.com/science/article/pii/0045782595009531

[152] T. J. R. Hughes and J. R. Stewart, “A space-time formulation for multiscale phenomena,” *Journal of Computational and Applied Mathematics*, vol. 74, no. 1–2, pp. 217–229, Nov. 1996. http://www.sciencedirect.com/science/article/pii/0377042796000258

[153] I. Harari, K. Grosh, T. J. R. Hughes, M. Malhotra, P. M. Pinsky, J. R. Stewart, and L. L. Thompson, “Recent developments in finite element methods for structural acoustics,” *ARCO*, vol. 3, no. 2–3, pp. 131–309, Jun. 1996. http://link.springer.com/article/10.1007/BF03041209

[154] Z. Johan, K. K. Mathur, S. L. Johnsson, and T. J. R. Hughes, “A case study in parallel computation: Viscous flow around an ONERA M6 wing,” *International Journal for Numerical Methods in Fluids*, vol. 21, no. 10, pp. 877–884, 1995. http://onlinelibrary.wiley.com/doi/10.1002/fld.1650211008/abstract

[155] T. J. R. Hughes, A. Masud, and I. Harari, “Numerical assessment of some membrane elements with drilling degrees of freedom,” *Computers & Structures*, vol. 55, no. 2, pp. 297–314, Apr. 1995. http://www.sciencedirect.com/science/article/pii/0045794994004389

[156] T. J. R. Hughes, “Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods,” *Computer Methods in Applied Mechanics and Engineering*, vol. 127, no. 1–4, pp. 387–401, Nov. 1995. http://www.sciencedirect.com/science/article/pii/0045782595008449

[157] T. J. R. Hughes, A. Masud, and I. Harari, “Dynamic analysis and drilling degrees of freedom,” *International Journal for Numerical Methods in Engineering*, vol. 38, no. 19, pp. 3193–3210, 1995. http://onlinelibrary.wiley.com/doi/10.1002/nme.1620381902/abstract

[158] T. J. R. Hughes and K. Jansen, “A stabilized finite element formulation for the Reynolds-averaged Navier-Stokes equations,” *Surv. Math. Ind.*, vol. 4, pp. 279–317, 1995. http://users.ices.utexas.edu/~hughes/photo-album/1995_hughes_astabilizedfini.pdf

[159] Z. Johan, K. K. Mathur, S. L. Johnsson, and T. J. R. Hughes, “Scalability of finite element applications on distributed-memory parallel computers,” *Computer Methods in Applied Mechanics and Engineering*, vol. 119, no. 1–2, pp. 61–72, Nov. 1994. http://www.sciencedirect.com/science/article/pii/004578259400076X

[160] G. Hauke and T. J. R. Hughes, “A unified approach to compressible and incompressible flows,” *Computer Methods in Applied Mechanics and Engineering*, vol. 113, no. 3–4, pp. 389–395, Mar. 1994. http://www.sciencedirect.com/science/article/pii/0045782594900558

[161] I. Harari and T. J. R. Hughes, “Studies of domain-based formulations for computing exterior problems of acoustics,” *International Journal for Numerical Methods in Engineering*, vol. 37, no. 17, pp. 2935–2950, 1994. http://onlinelibrary.wiley.com/doi/10.1002/nme.1620371706/abstract

[162] I. Harari and T. J. . Hughes, “Stabilized finite element methods for steady advection—diffusion with production,” *Computer Methods in Applied Mechanics and Engineering*, vol. 115, no. 1–2, pp. 165–191, 1994. http://www.sciencedirect.com/science/article/pii/0045782594901937

[163] J.-J. Droux and T. J. . Hughes, “A boundary integral modification of the Galerkin least squares formulation for the Stokes problem,” *Computer Methods in Applied Mechanics and Engineering*, vol. 113, no. 1–2, pp. 173–182, Mar. 1994. http://www.sciencedirect.com/science/article/pii/0045782594902178

[164] F. Chalot and T. J. R. Hughes, “A consistent equilibrium chemistry algorithm for hypersonic flows,” *Computer Methods in Applied Mechanics and Engineering*, vol. 112, no. 1–4, pp. 25–40, Feb. 1994. http://www.sciencedirect.com/science/article/pii/0045782594900175

[165] K. Jansen, Z. Johan, and T. J. R. Hughes, “Implementation of a one-equation turbulence model within a stabilized finite element formulation of a symmetric advective-diffusive system,” *Computer Methods in Applied Mechanics and Engineering*, vol. 105, no. 3, pp. 405–433, Jun. 1993. http://www.sciencedirect.com/science/article/pii/0045782593900667

[166] T. J. . Hughes and K. Jansen, “Finite element methods in wind engineering,” *Journal of Wind Engineering and Industrial Aerodynamics*, vol. 46–47, pp. 297–313, Aug. 1993. http://www.sciencedirect.com/science/article/pii/016761059390296Z

[167] L. P. Franca and T. J. R. Hughes, “Convergence analyses of Galerkin least-squares methods for symmetric advective-diffusive forms of the Stokes and incompressible Navier-Stokes equations,” *Computer Methods in Applied Mechanics and Engineering*, vol. 105, no. 2, pp. 285–298, Jun. 1993. http://www.sciencedirect.com/science/article/pii/004578259390126I

[168] N. Takashi and T. J. R. Hughes, “An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body,” *Computer Methods in Applied Mechanics and Engineering*, vol. 95, no. 1, pp. 115–138, Feb. 1992. http://www.sciencedirect.com/science/article/pii/004578259290085X

[169] J. C. Simo, D. D. Fox, and T. J. R. Hughes, “Formulations of finite elasticity with independent rotations,” *Computer Methods in Applied Mechanics and Engineering*, vol. 95, no. 2, pp. 277–288, Mar. 1992. http://www.sciencedirect.com/science/article/pii/0045782592901449

[170] Z. Johan, T. J. R. Hughes, K. K. Mathur, and S. L. Johnsson, “A data parallel finite element method for computational fluid dynamics on the Connection Machine system,” *Computer Methods in Applied Mechanics and Engineering*, vol. 99, no. 1, pp. 113–134, Aug. 1992. http://www.sciencedirect.com/science/article/pii/0045782592901243

[171] I. Harari and T. J. R. Hughes, “What are C and h?: Inequalities for the analysis and design of finite element methods,” *Computer Methods in Applied Mechanics and Engineering*, vol. 97, no. 2, pp. 157–192, Jun. 1992. http://www.sciencedirect.com/science/article/pii/004578259290162D

[172] I. Harari and T. J. R. Hughes, “Galerkin/least-squares finite element methods for the reduced wave equation with non-reflecting boundary conditions in unbounded domains,” *Computer Methods in Applied Mechanics and Engineering*, vol. 98, no. 3, pp. 411–454, Aug. 1992. http://www.sciencedirect.com/science/article/pii/0045782592900066

[173] I. Harari and T. J. R. Hughes, “Analysis of continuous formulations underlying the computation of time-harmonic acoustics in exterior domains,” *Computer Methods in Applied Mechanics and Engineering*, vol. 97, no. 1, pp. 103–124, May 1992. http://www.sciencedirect.com/science/article/pii/004578259290109W

[174] I. Harari and T. J. R. Hughes, “A cost comparison of boundary element and finite element methods for problems of time-harmonic acoustics,” *Computer Methods in Applied Mechanics and Engineering*, vol. 97, no. 1, pp. 77–102, May 1992. http://www.sciencedirect.com/science/article/pii/004578259290108V

[175] L. P. Franca, S. L. Frey, and T. J. R. Hughes, “Stabilized finite element methods: I. Application to the advective-diffusive model,” *Computer Methods in Applied Mechanics and Engineering*, vol. 95, no. 2, pp. 253–276, Mar. 1992. http://www.sciencedirect.com/science/article/pii/0045782592901438

[176] H. J. C. Barbosa and T. J. R. Hughes, “Circumventing the Babuška-Brezzi condition in mixed finite element approximations of elliptic variational inequalities,” *Computer Methods in Applied Mechanics and Engineering*, vol. 97, no. 2, pp. 193–210, Jun. 1992. http://www.sciencedirect.com/science/article/pii/004578259290163E

[177] F. Shakib and T. J. R. Hughes, “A new finite element formulation for computational fluid dynamics: IX. Fourier analysis of space-time Galerkin/least-squares algorithms,” *Computer Methods in Applied Mechanics and Engineering*, vol. 87, no. 1, pp. 35–58, May 1991. http://www.sciencedirect.com/science/article/pii/004578259190145V

[178] F. Shakib, T. J. R. Hughes, and Z. Johan, “A new finite element formulation for computational fluid dynamics: X. The compressible Euler and Navier-Stokes equations,” *Computer Methods in Applied Mechanics and Engineering*, vol. 89, no. 1–3, pp. 141–219, Aug. 1991. http://www.sciencedirect.com/science/article/pii/0045782591900414

[179] Z. Johan and T. J. R. Hughes, “A globally convergent matrix-free algorithm for implicit time-marching schemes arising in finite element analysis in fluids,” *Computer Methods in Applied Mechanics and Engineering*, vol. 87, no. 2–3, pp. 281–304, Jun. 1991. http://www.sciencedirect.com/science/article/pii/004578259190009U

[180] Z. Johan, T. J. R. Hughes, and F. Shakib, “A MATRIX-FREE IMPLICIT ITERATIVE SOLVER FOR COMPRESSIBLE FLOW PROBLEMS,” *Rend. Sem. Mat. Univ. Pol. Torino Fascicolo Speciale*, pp. 141–161, 1991. http://users.ices.utexas.edu/~hughes/photo-album/1991_johan_amatrixfreeimpli.pdf

[181] I. Harari and T. J. R. Hughes, “Finite element methods for the helmholtz equation in an exterior domain: Model problems,” *Computer Methods in Applied Mechanics and Engineering*, vol. 87, no. 1, pp. 59–96, May 1991. http://www.sciencedirect.com/science/article/pii/004578259190146W

[182] H. J. C. Barbosa and T. J. R. Hughes, “The finite element method with Lagrange multipliers on the boundary: circumventing the Babuška-Brezzi condition,” *Computer Methods in Applied Mechanics and Engineering*, vol. 85, no. 1, pp. 109–128, Jan. 1991. http://www.sciencedirect.com/science/article/pii/004578259190125P

[183] G. M. Hulbert and T. J. R. Hughes, “Space-time finite element methods for second-order hyperbolic equations,” *Computer Methods in Applied Mechanics and Engineering*, vol. 84, no. 3, pp. 327–348, Dec. 1990. http://www.sciencedirect.com/science/article/pii/004578259090082W

[184] I. Harari and T. J. R. Hughes, “Design and Analysis of Finite Element Methods for the Helmholtz Equation in Exterior Domains,” *Appl. Mech. Rev.*, vol. 43, no. 5S, pp. S366–S373, May 1990. http://dx.doi.org/10.1115/1.3120842

[185] F. Chalot, T. J. R. Hughes, and F. Shakib, “Symmetrization of conservation laws with entropy for high-temperature hypersonic computations,” *Computing Systems in Engineering*, vol. 1, no. 2–4, pp. 495–521, 1990. http://www.sciencedirect.com/science/article/pii/095605219090032G

[186] F. Shakib, T. J. R. Hughes, and Z. Johan, “A multi-element group preconditioned GMRES algorithm for nonsymmetric systems arising in finite element analysis,” *Computer Methods in Applied Mechanics and Engineering*, vol. 75, no. 1–3, pp. 415–456, Oct. 1989. http://www.sciencedirect.com/science/article/pii/0045782589900406

[187] I. Miranda, R. M. Ferencz, and T. J. R. Hughes, “An improved implicit-explicit time integration method for structural dynamics,” *Earthquake Engineering & Structural Dynamics*, vol. 18, no. 5, pp. 643–653, 1989. http://onlinelibrary.wiley.com/doi/10.1002/eqe.4290180505/abstract

[188] A. F. D. Loula, I. Miranda, T. J. R. Hughes, and L. P. Franca, “On mixed finite element methods for axisymmetric shell analysis,” *Computer Methods in Applied Mechanics and Engineering*, vol. 72, no. 2, pp. 201–231, Feb. 1989. http://www.sciencedirect.com/science/article/pii/0045782589901618

[189] T. J. R. Hughes, “New directions in computational mechanics,” *Nuclear Engineering and Design*, vol. 114, no. 2, pp. 197–210, Jun. 1989. http://www.sciencedirect.com/science/article/pii/002954938990191X

[190] T. J. R. Hughes, L. P. Franca, and G. M. Hulbert, “A new finite element formulation for computational fluid dynamics: VIII. The galerkin/least-squares method for advective-diffusive equations,” *Computer Methods in Applied Mechanics and Engineering*, vol. 73, no. 2, pp. 173–189, May 1989. http://www.sciencedirect.com/science/article/pii/0045782589901114

[191] T. J. R. Hughes and F. Brezzi, “On drilling degrees of freedom,” *Computer Methods in Applied Mechanics and Engineering*, vol. 72, no. 1, pp. 105–121, Jan. 1989. http://www.sciencedirect.com/science/article/pii/0045782589901242

[192] C. Hoff, T. J. R. Hughes, G. Hulbert, and P. J. Pahl, “Extended comparison of the Hilber-Hughes-Taylor α-method and the Θ1-method,” *Computer Methods in Applied Mechanics and Engineering*, vol. 76, no. 1, pp. 87–93, Nov. 1989. http://www.sciencedirect.com/science/article/pii/0045782589901424

[193] T. J. R. Hughes and G. M. Hulbert, “Space-time finite element methods for elastodynamics: Formulations and error estimates,” *Computer Methods in Applied Mechanics and Engineering*, vol. 66, no. 3, pp. 339–363, Feb. 1988. http://www.sciencedirect.com/science/article/pii/0045782588900060

[194] T. J. R. Hughes and L. P. Franca, “Convergence of transverse shear stresses in the finite element analysis of plates,” *Communications in Applied Numerical Methods*, vol. 4, no. 2, pp. 185–187, 1988. http://onlinelibrary.wiley.com/doi/10.1002/cnm.1630040208/abstract

[195] T. J. R. Hughes and L. P. Franca, “A mixed finite element formulation for Reissner-mindlin plate theory: Uniform convergence of all higher-order spaces,” *Computer Methods in Applied Mechanics and Engineering*, vol. 67, no. 2, pp. 223–240, Mar. 1988. http://www.sciencedirect.com/science/article/pii/0045782588901272

[196] L. P. Franca and T. J. R. Hughes, “Two classes of mixed finite element methods,” *Computer Methods in Applied Mechanics and Engineering*, vol. 69, no. 1, pp. 89–129, Jul. 1988. http://www.sciencedirect.com/science/article/pii/0045782588901685

[197] L. P. Franca, T. J. R. Hughes, A. F. D. Loula, and I. Miranda, “A new family of stable elements for nearly incompressible elasticity based on a mixed Petrov-Galerkin finite element formulation,” *Numer. Math.*, vol. 53, no. 1–2, pp. 123–141, Jan. 1988. http://link.springer.com/article/10.1007/BF01395881

[198] A. F. D. Loula, T. J. R. Hughes, and L. P. Franca, “Petrov-Galerkin formulations of the Timoshenko beam problem,” *Computer Methods in Applied Mechanics and Engineering*, vol. 63, no. 2, pp. 115–132, Jul. 1987. http://www.sciencedirect.com/science/article/pii/0045782587901678

[199] A. F. D. Loula, T. J. R. Hughes, L. P. Franca, and I. Miranda, “Mixed Petrov-Galerkin methods for the Timoshenko beam problem,” *Computer Methods in Applied Mechanics and Engineering*, vol. 63, no. 2, pp. 133–154, Jul. 1987. http://www.sciencedirect.com/science/article/pii/004578258790168X

[200] A. F. D. Loula, L. P. Franca, T. J. R. Hughes, and I. Miranda, “Stability, convergence and accuracy of a new finite element method for the circular arch problem,” *Computer Methods in Applied Mechanics and Engineering*, vol. 63, no. 3, pp. 281–303, Aug. 1987. http://www.sciencedirect.com/science/article/pii/0045782587900740

[201] G. M. Hulbert and T. J. R. Hughes, “An error analysis of truncated starting conditions in step-by-step time integration: Consequences for structural dynamics,” *Earthquake Engineering & Structural Dynamics*, vol. 15, no. 7, pp. 901–910, 1987. http://onlinelibrary.wiley.com/doi/10.1002/eqe.4290150710/abstract

[202] T. J. R. Hughes, “Recent progress in the development and understanding of SUPG methods with special reference to the compressible Euler and Navier-Stokes equations,” *International Journal for Numerical Methods in Fluids*, vol. 7, no. 11, pp. 1261–1275, 1987. http://onlinelibrary.wiley.com/doi/10.1002/fld.1650071108/abstract

[203] T. J. R. Hughes and L. P. Franca, “A new finite element formulation for computational fluid dynamics: VII. The stokes problem with various well-posed boundary conditions: Symmetric formulations that converge for all velocity/pressure spaces,” *Computer Methods in Applied Mechanics and Engineering*, vol. 65, no. 1, pp. 85–96, Nov. 1987. http://www.sciencedirect.com/science/article/pii/0045782587901848

[204] T. J. R. Hughes, L. P. Franca, and M. Mallet, “A new finite element formulation for computational fluid dynamics: VI. Convergence analysis of the generalized SUPG formulation for linear time-dependent multidimensional advective-diffusive systems,” *Computer Methods in Applied Mechanics and Engineering*, vol. 63, no. 1, pp. 97–112, Jul. 1987. http://www.sciencedirect.com/science/article/pii/0045782587901253

[205] T. J. R. Hughes, T. Belytschko, and W. K. Liu, “Convergence of an element-partitioned subcycling algorithm for the semi-discrete heat equation,” *Numerical Methods for Partial Differential Equations*, vol. 3, no. 2, pp. 131–137, 1987. http://onlinelibrary.wiley.com/doi/10.1002/num.1690030205/abstract

[206] J. C. Simo and T. J. R. Hughes, “On the Variational Foundations of Assumed Strain Methods,” *J. Appl. Mech.*, vol. 53, no. 1, pp. 51–54, Mar. 1986. http://dx.doi.org/10.1115/1.3171737

[207] A. MULLER and T. J. R. HUGHES, “PRECONDICIONADORES ELEMENTO-POR-ELEMENTO Y GLOBALES. UNA PERSPECTIVA*.,” *Revista internacional de metodos numericos para calculo y disefio’en ingenieria*, vol. 2, no. 1, pp. 27–41, 1986. http://users.ices.utexas.edu/~hughes/photo-album/1986_muller_precondicionado.pdf

[208] T. J. R. Hughes, L. P. Franca, and M. Mallet, “A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics,” *Computer Methods in Applied Mechanics and Engineering*, vol. 54, no. 2, pp. 223–234, Feb. 1986. http://www.sciencedirect.com/science/article/pii/0045782586901271

[209] T. J. R. Hughes and F. Shakib, “Pseudo-corner theory: a simple enhancement of J2-flow theory for applications involving non-proportional loading,” *Engineering Computations*, vol. 3, no. 2, pp. 116–120, Dec. 1986. http://www.emeraldinsight.com/journals.htm?articleid=1662554

[210] T. J. R. Hughes and M. Mallet, “A new finite element formulation for computational fluid dynamics: IV. A discontinuity-capturing operator for multidimensional advective-diffusive systems,” *Computer Methods in Applied Mechanics and Engineering*, vol. 58, no. 3, pp. 329–336, Nov. 1986. http://www.sciencedirect.com/science/article/pii/0045782586901532

[211] T. J. R. Hughes and M. Mallet, “A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems,” *Computer Methods in Applied Mechanics and Engineering*, vol. 58, no. 3, pp. 305–328, Nov. 1986. http://www.sciencedirect.com/science/article/pii/0045782586901520

[212] T. J. R. Hughes, M. Mallet, and M. Akira, “A new finite element formulation for computational fluid dynamics: II. Beyond SUPG,” *Computer Methods in Applied Mechanics and Engineering*, vol. 54, no. 3, pp. 341–355, Mar. 1986. http://www.sciencedirect.com/science/article/pii/0045782586901106

[213] T. J. R. Hughes, L. P. Franca, and M. Balestra, “A new finite element formulation for computational fluid dynamics: V. Circumventing the babuška-brezzi condition: a stable Petrov-Galerkin formulation of the stokes problem accommodating equal-order interpolations,” *Computer Methods in Applied Mechanics and Engineering*, vol. 59, no. 1, pp. 85–99, Nov. 1986. http://www.sciencedirect.com/science/article/pii/0045782586900253

[214] J. M. Winget and T. J. R. Hughes, “Solution algorithms for nonlinear transient heat conduction analysis employing element-by-element iterative strategies,” *Computer Methods in Applied Mechanics and Engineering*, vol. 52, no. 1–3, pp. 711–815, Sep. 1985. http://www.sciencedirect.com/science/article/pii/0045782585900155

[215] A. Tessler and T. J. R. Hughes, “A three-node mindlin plate element with improved transverse shear,” *Computer Methods in Applied Mechanics and Engineering*, vol. 50, no. 1, pp. 71–101, Jul. 1985. http://www.sciencedirect.com/science/article/pii/0045782585901148

[216] A. Mizukami and T. J. R. Hughes, “A Petrov-Galerkin finite element method for convection-dominated flows: An accurate upwinding technique for satisfying the maximum principle,” *Computer Methods in Applied Mechanics and Engineering*, vol. 50, no. 2, pp. 181–193, Aug. 1985. http://www.sciencedirect.com/science/article/pii/0045782585900891

[217] T. J. R. Hughes, “Discussion of a numerical study of localized deformation in bi-crystals,” *Mechanics of Materials*, vol. 4, no. 3–4, pp. 437–438, Dec. 1985. http://www.sciencedirect.com/science/article/pii/0167663685900389

[218] T. J. R. Hughes and T. E. Tezduyar, “Analysis of some fully-discrete algorithms for the one-dimensional heat equation,” *International Journal for Numerical Methods in Engineering*, vol. 21, no. 1, pp. 163–168, 1985. http://onlinelibrary.wiley.com/doi/10.1002/nme.1620210113/abstract

[219] T. J. R. Hughes and T. E. Tezduyar, “Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible euler equations,” *Computer Methods in Applied Mechanics and Engineering*, vol. 45, no. 1–3, pp. 217–284, Sep. 1984. http://www.sciencedirect.com/science/article/pii/0045782584901579

[220] T. J. R. Hughes and T. E. Tezduyar, “Stability and accuracy analysis of some fully-discrete algorithms for the one-dimensional second-order wave equation,” *Computers & Structures*, vol. 19, no. 4, pp. 665–668, 1984. http://www.sciencedirect.com/science/article/pii/0045794984901135

[221] A. Tessler and T. J. R. Hughes, “An improved treatment of transverse shear in the mindlin-type four-node quadrilateral element,” *Computer Methods in Applied Mechanics and Engineering*, vol. 39, no. 3, pp. 311–335, Sep. 1983. http://www.sciencedirect.com/science/article/pii/0045782583900968

[222] T. J. R. Hughes and T. Belytschko, “A Précis of Developments in Computational Methods for Transient Analysis,” *J. Appl. Mech.*, vol. 50, no. 4b, pp. 1033–1041, Dec. 1983. http://dx.doi.org/10.1115/1.3167186

[223] T. J. R. Hughes, I. Levit, and J. Winget, “An element-by-element solution algorithm for problems of structural and solid mechanics,” *Computer Methods in Applied Mechanics and Engineering*, vol. 36, no. 2, pp. 241–254, Feb. 1983. http://www.sciencedirect.com/science/article/pii/0045782583901159

[224] T. J. R. Hughes and E. Carnoy, “Nonlinear finite element shell formulation accounting for large membrane strains,” *Computer Methods in Applied Mechanics and Engineering*, vol. 39, no. 1, pp. 69–82, Jul. 1983. http://www.sciencedirect.com/science/article/pii/0045782583900749

[225] T. Hughes, I. Levit, and J. Winget, “Element‐by‐Element Implicit Algorithms for Heat Conduction,” *Journal of Engineering Mechanics*, vol. 109, no. 2, pp. 576–585, 1983. http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399%281983%29109%3A2%28576%29

[226] E. G. Carnoy and T. J. R. Hughes, “Finite element analysis of the secondary buckling of a flat plate under uniaxial compression,” *International Journal of Non-Linear Mechanics*, vol. 18, no. 2, pp. 167–175, 1983. http://www.sciencedirect.com/science/article/pii/0020746283900434

[227] J. M. Winget and T. J. R. Hughes, “A profile solver for specially structured symmetric-unsymmetric equation systems,” *Advances in Engineering Software (1978)*, vol. 4, no. 2, pp. 64–67, Apr. 1982. http://www.sciencedirect.com/science/article/pii/S0141119582800557

[228] A. N. Brooks and T. J. R. Hughes, “Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations,” *Computer Methods in Applied Mechanics and Engineering*, vol. 32, no. 1–3, pp. 199–259, Sep. 1982. http://www.sciencedirect.com/science/article/pii/0045782582900718

[229] J. H. Prevost and T. J. R. Hughes, “Finite-Element Solution of Elastic-Plastic Boundary-Value Problems,” *J. Appl. Mech.*, vol. 48, no. 1, pp. 69–74, Mar. 1981. http://dx.doi.org/10.1115/1.3157594

[230] J. H. Prevost, R. F. Scott, T. J. R. Hughes, and B. Cuny, “Offshore Gravity Structures: Analysis,” *Journal of the Geotechnical Engineering Division*, vol. 107, no. 2, pp. 143–165, Feb. 1981. http://cedb.asce.org/cgi/WWWdisplay.cgi?10036

[231] W. Kanok-Nukulchai, R. L. Taylor, and T. J. R. Hughes, “A large deformation formulation for shell analysis by the finite element method,” *Computers & Structures*, vol. 13, no. 1–3, pp. 19–27, Jun. 1981. http://www.sciencedirect.com/science/article/pii/004579498190105X

[232] T. J. R. Hughes and T. E. Tezduyar, “Finite Elements Based Upon Mindlin Plate Theory With Particular Reference to the Four-Node Bilinear Isoparametric Element,” *J. Appl. Mech.*, vol. 48, no. 3, pp. 587–596, Sep. 1981. http://dx.doi.org/10.1115/1.3157679

[233] T. J. R. Hughes and R. A. Stephenson, “Convergence of implicit-explicit algorithms in nonlinear transient analysis,” *International Journal of Engineering Science*, vol. 19, no. 2, pp. 295–302, 1981. http://www.sciencedirect.com/science/article/pii/0020722581900306

[234] T. J. R. Hughes and W. K. Liu, “Nonlinear finite element analysis of shells: Part I. three-dimensional shells,” *Computer Methods in Applied Mechanics and Engineering*, vol. 26, no. 3, pp. 331–362, Jun. 1981. http://www.sciencedirect.com/science/article/pii/0045782581901213

[235] T. J. R. Hughes and W. K. Liu, “Nonlinear finite element analysis of shells-part II. two-dimensional shells,” *Computer Methods in Applied Mechanics and Engineering*, vol. 27, no. 2, pp. 167–181, Jul. 1981. http://www.sciencedirect.com/science/article/pii/0045782581901481

[236] T. J. R. Hughes, W. K. Liu, and T. K. Zimmermann, “Lagrangian-Eulerian finite element formulation for incompressible viscous flows,” *Computer Methods in Applied Mechanics and Engineering*, vol. 29, no. 3, pp. 329–349, Dec. 1981. http://www.sciencedirect.com/science/article/pii/0045782581900499

[237] J. Prevost, T. Hughes, and M. Cohen, “Analysis of Gravity Offshore Structure Foundations,” *Journal of Petroleum Technology*, vol. 32, no. 2, Feb. 1980. http://www.onepetro.org/mslib/app/Preview.do?paperNumber=00007239&societyCode=SPE

[238] T. J. R. HUGHES, “Some Current Trends In Finite Element Research,” *AMR*, vol. 33, no. 11, pp. 1467–1477, Nov. 1980. http://users.ices.utexas.edu/~hughes/photo-album/1980_hughes_somecurrenttren.pdf

[239] T. J. R. Hughes, “Recent developments in computer methods for structural analysis,” *Nuclear Engineering and Design*, vol. 57, no. 2, pp. 427–439, May 1980. http://www.sciencedirect.com/science/article/pii/0029549380901168

[240] T. J. R. Hughes, “Generalization of selective integration procedures to anisotropic and nonlinear media,” *International Journal for Numerical Methods in Engineering*, vol. 15, no. 9, pp. 1413–1418, 1980. http://onlinelibrary.wiley.com/doi/10.1002/nme.1620150914/abstract

[241] T. J. R. Hughes and J. Winget, “Finite rotation effects in numerical integration of rate constitutive equations arising in large-deformation analysis,” *International Journal for Numerical Methods in Engineering*, vol. 15, no. 12, pp. 1862–1867, 1980. http://onlinelibrary.wiley.com/doi/10.1002/nme.1620151210/abstract

[242] T. J. R. Hughes and J. E. Akin, “Techniques for developing ‘special’ finite element shape functions with particular reference to singularities,” *International Journal for Numerical Methods in Engineering*, vol. 15, no. 5, pp. 733–751, 1980. http://onlinelibrary.wiley.com/doi/10.1002/nme.1620150509/abstract

[243] T. J. R. Hughes, K. S. Pister, and R. L. Taylor, “Implicit-explicit finite elements in nonlinear transient analysis,” *Computer Methods in Applied Mechanics and Engineering*, vol. 17–18, Part 1, pp. 159–182, Jan. 1979. http://www.sciencedirect.com/science/article/pii/0045782579900860

[244] T. J. R. Hughes, W. K. Liu, and A. Brooks, “Finite element analysis of incompressible viscous flows by the penalty function formulation,” *Journal of Computational Physics*, vol. 30, no. 1, pp. 1–60, Jan. 1979. http://www.sciencedirect.com/science/article/pii/002199917990086X

[245] D. S. Malkus and T. J. R. Hughes, “Mixed finite element methods — Reduced and selective integration techniques: A unification of concepts,” *Computer Methods in Applied Mechanics and Engineering*, vol. 15, no. 1, pp. 63–81, Jul. 1978. http://www.sciencedirect.com/science/article/pii/0045782578900051

[246] T. J. R. Hughes and W. K. Liu, “Implicit-Explicit Finite Elements in Transient Analysis: Stability Theory,” *J. Appl. Mech.*, vol. 45, no. 2, pp. 371–374, Jun. 1978. http://dx.doi.org/10.1115/1.3424304

[247] T. J. R. Hughes and W. K. Liu, “Implicit-Explicit Finite Elements in Transient Analysis: Implementation and Numerical Examples,” *J. Appl. Mech.*, vol. 45, no. 2, pp. 375–378, Jun. 1978. http://dx.doi.org/10.1115/1.3424305

[248] T. J. R. Hughes, T. K. Caughey, and W. K. Liu, “Finite-Element Methods for Nonlinear Elastodynamics Which Conserve Energy,” *J. Appl. Mech.*, vol. 45, no. 2, pp. 366–370, Jun. 1978. http://dx.doi.org/10.1115/1.3424303

[249] T. J. R. Hughes, “A simple scheme for developing ‘upwind’ finite elements,” *International Journal for Numerical Methods in Engineering*, vol. 12, no. 9, pp. 1359–1365, 1978. http://onlinelibrary.wiley.com/doi/10.1002/nme.1620120904/abstract

[250] T. J. R. Hughes and R. L. Taylor, “Unconditionally stable algorithms for quasi-static elasto/visco-plastic finite element analysis,” *Computers & Structures*, vol. 8, no. 2, pp. 169–173, Apr. 1978. http://www.sciencedirect.com/science/article/pii/0045794978900196

[251] T. J. R. Hughes and K. S. Pister, “Consistent linearization in mechanics of solids and structures,” *Computers & Structures*, vol. 8, no. 3–4, pp. 391–397, May 1978. http://www.sciencedirect.com/science/article/pii/0045794978901839

[252] T. J. R. Hughes and J. E. Marsden, “Classical elastodynamics as a linear symmetric hyperbolic system,” *J Elasticity*, vol. 8, no. 1, pp. 97–110, Jan. 1978. http://link.springer.com/article/10.1007/BF00044512

[253] T. J. R. Hughes and M. Cohen, “The ‘heterosis’ finite element for plate bending,” *Computers & Structures*, vol. 9, no. 5, pp. 445–450, Nov. 1978. http://www.sciencedirect.com/science/article/pii/004579497890041X

[254] T. J. R. Hughes, M. Cohen, and M. Haroun, “Reduced and selective integration techniques in the finite element analysis of plates,” *Nuclear Engineering and Design*, vol. 46, no. 1, pp. 203–222, Mar. 1978. http://www.sciencedirect.com/science/article/pii/002954937890184X

[255] H. M. Hilber and T. J. R. Hughes, “Collocation, dissipation and [overshoot] for time integration schemes in structural dynamics,” *Earthquake Engineering & Structural Dynamics*, vol. 6, no. 1, pp. 99–117, 1978. http://onlinelibrary.wiley.com/doi/10.1002/eqe.4290060111/abstract

[256] A. J. Chorin, T. J. R. Hughes, M. F. McCracken, and J. E. Marsden, “Product formulas and numerical algorithms,” *Communications on Pure and Applied Mathematics*, vol. 31, no. 2, pp. 205–256, 1978. http://onlinelibrary.wiley.com/doi/10.1002/cpa.3160310205/abstract

[257] T. J. R. Hughes, “Equivalence of Finite Elements for Nearly Incompressible Elasticity,” *J. Appl. Mech.*, vol. 44, no. 1, pp. 181–183, Mar. 1977. http://dx.doi.org/10.1115/1.3423994

[258] T. J. R. Hughes, “Unconditionally stable algorithms for nonlinear heat conduction,” *Computer Methods in Applied Mechanics and Engineering*, vol. 10, no. 2, pp. 135–139, Feb. 1977. http://www.sciencedirect.com/science/article/pii/0045782577900019

[259] T. J. R. Hughes, “A note on the stability of Newmark’s algorithm in nonlinear structural dynamics,” *International Journal for Numerical Methods in Engineering*, vol. 11, no. 2, pp. 383–386, 1977. http://onlinelibrary.wiley.com/doi/10.1002/nme.1620110212/abstract

[260] T. J. R. Hughes, R. L. Taylor, and W. Kanoknukulchai, “A simple and efficient finite element for plate bending,” *International Journal for Numerical Methods in Engineering*, vol. 11, no. 10, pp. 1529–1543, 1977. http://onlinelibrary.wiley.com/doi/10.1002/nme.1620111005/abstract

[261] T. J. R. Hughes and J. E. Marsden, “Some applications of geometry in continuum mechanics,” *Reports on Mathematical Physics*, vol. 12, no. 1, pp. 35–44, Aug. 1977. http://www.sciencedirect.com/science/article/pii/0034487777900441

[262] T. J. R. Hughes, T. Kato, and J. E. Marsden, “Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity,” *Arch. Rational Mech. Anal.*, vol. 63, no. 3, pp. 273–294, Sep. 1977. http://link.springer.com/article/10.1007/BF00251584

[263] H. M. Hilber, T. J. R. Hughes, and R. L. Taylor, “Improved numerical dissipation for time integration algorithms in structural dynamics,” *Earthquake Engineering & Structural Dynamics*, vol. 5, no. 3, pp. 283–292, 1977. http://onlinelibrary.wiley.com/doi/10.1002/eqe.4290050306/abstract

[264] T. J. R. Hughes, “Stability, convergence and growth and decay of energy of the average acceleration method in nonlinear structural dynamics,” *Computers & Structures*, vol. 6, no. 4–5, pp. 313–324, Aug. 1976. http://www.sciencedirect.com/science/article/pii/0045794976900079

[265] T. J. R. Hughes, “Reduction scheme for some structural eigenvalue problems by a variational theorem,” *International Journal for Numerical Methods in Engineering*, vol. 10, no. 4, pp. 845–852, 1976. http://onlinelibrary.wiley.com/doi/10.1002/nme.1620100411/abstract

[266] T. J. R. Hughes, R. L. Taylor, J. L. Sackman, A. Curnier, and W. Kanoknukulchai, “A finite element method for a class of contact-impact problems,” *Computer Methods in Applied Mechanics and Engineering*, vol. 8, no. 3, pp. 249–276, Jul. 1976. http://www.sciencedirect.com/science/article/pii/0045782576900189

[267] T. J. R. Hughes, H. M. Hilber, and R. L. Taylor, “A reduction scheme for problems of structural dynamics,” *International Journal of Solids and Structures*, vol. 12, no. 11, pp. 749–767, 1976. http://www.sciencedirect.com/science/article/pii/0020768376900408

[268] T. J. R. Hughes and J. Lubliner, “On the one-dimensional theory of blood flow in the larger vessels,” *Mathematical Biosciences*, vol. 18, no. 1–2, pp. 161–170, Oct. 1973. http://www.sciencedirect.com/science/article/pii/0025556473900278

[269] H. Allik and T. J. R. Hughes, “Finite element method for piezoelectric vibration,” *International Journal for Numerical Methods in Engineering*, vol. 2, no. 2, pp. 151–157, 1970. http://onlinelibrary.wiley.com/doi/10.1002/nme.1620020202/abstract