ASE 211 Homework 3

Due: 12:00 noon, Friday, September 22. Put assignments in the drawer on the third floor of WRW marked 'ASE 211.'

1. By hand, use Gaussian elimination to find the solution of the problem:

$$A\mathbf{x} = \left[egin{array}{ccc} 3 & 2 & -1 \ 6 & 1 & 0 \ -3 & 6 & 4 \ \end{array}
ight] \left[egin{array}{c} x_1 \ x_2 \ x_3 \ \end{array}
ight] = \left[egin{array}{c} 10 \ 9 \ 11 \ \end{array}
ight] = \mathbf{b}.$$

Step 1: multiply row 1 by 6/3 and subtract row 2 from row 1 to get:

$$3x_2 - 2x_3 = 11$$

Step 2: multiply row 1 by 3/-3 and subtract row 3 from row 1 to get:

$$-8x_2 - 3x_3 = -21$$

Step 3: multiply row 2 by -8/3 and subtract row 2 from row 3 to get:

$$25/3x_3 = -88/3 + 21 = -25/3.$$

Then $x_3 = -1$. By back substitution, $x_2 = 3$ and $x_1 = 1$.

Check:

$$\begin{bmatrix} 3 & 2 & -1 \\ 6 & 1 & 0 \\ -3 & 6 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 10 \\ 9 \\ 11 \end{bmatrix}.$$

2. Solve the problem above using Matlab. Enter the matrix A and the column vector \mathbf{b} , and use the command

A\b

to solve for \mathbf{x} .

A =

```
-3
           6
                4
>> b=[10; 9; 11]
b =
    10
     9
    11
>> x=A\b
    1.0000
    3.0000
   -1.0000
>> diary
   3. Solve problem A3.4 in the book using Matlab.
>> d=sqrt(2)/2
d =
    0.7071
>> A=[1 0 0 0 d 0;0 1 0 1 d 0;0 0 1 0 0 d;0 0 0 -1 0 -d;0 0 0 0 -d -d;0 0 0 0 -d d]
A =
    1.0000
                    0
                               0
                                          0
                                               0.7071
                                                               0
               1.0000
                                    1.0000
                                               0.7071
         0
                               0
                                                               0
         0
                    0
                          1.0000
                                                         0.7071
         0
                    0
                                   -1.0000
                                                        -0.7071
                               0
                                                    0
                                              -0.7071
                                                        -0.7071
         0
                    0
                               0
```

-0.7071

0

0

0.7071

b =

0 0 0

100 0

$$>> x=A\b$$

x =

50.0000

0.0000

50.0000

50.0000

-70.7107

-70.7107

>> diary

Thus $V_1=50,\ H_1=0,\ V_2=50,\ F_{12}=50,\ F_{13}=-70.7107$ and $F_{23}=-70.7107$ in whatever units W_3 is given in.

4. Suppose we change the matrix A in problem 1 as follows:

$$A = \left[\begin{array}{rrr} 3 & 2 & -1 \\ 6 & 1 & 0 \\ -3 & 1 & -1 \end{array} \right].$$

By hand, attempt to solve the system in problem 1 with this matrix. What happens?

Step 1: multiply row 1 by 6/3 and subtract row 2 from row 1 to get:

$$3x_2 - 2x_3 = 11$$

Step 2: multiply row 1 by 3/-3 and subtract row 3 from row 1 to get:

$$-3x_2 + 2x_3 = -21$$

Now equations 2 and 3 contradict each other. Therefore the solution to this problem does not exist.