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Abstract: New families of direct serendipity and direct mixed finite elements on general planar,
strictly convex polygons were recently defined by the authors. The finite elements of index r are
H1 and H(div) conforming, respectively, and approximate optimally to order r + 1 while using
the minimal number of degrees of freedom. The shape function space consists of the full set of
polynomials defined directly on the element and augmented with a space of supplemental functions.
The supplemental functions were constructed as rational functions, which can be difficult to integrate
accurately using numerical quadrature rules when the index is high. This can result in a loss of
accuracy in certain cases. In this work, we propose alternative ways to construct the supplemental
functions on the element as continuous piecewise polynomials. One approach results in supplemental
functions that are in Hp for any p ≥ 1. We prove the optimal approximation property for these
new finite elements. We also perform numerical tests on them, comparing results for the original
supplemental functions and the various alternatives. The new piecewise polynomial supplements
can be integrated accurately, and therefore show better robustness with respect to the underlying
meshes used.

Keywords: serendipity finite elements; direct finite elements; optimal approximation; polygonal
meshes; finite element exterior calculus

MSC: 65N30; 65N12; 65D05

1. Introduction

There has been strong interest in using polygonal and polyhedral meshes when solving
certain types of problems via the finite element method. For just a few examples, we note
problems in solid mechanics [1,2], elasticity [3,4], fracture mechanics [5–7], thin plates [8],
shells [9], porous media [10], topology optimization [11–13], and finding eigenvalues [14].
In fact, polygonal meshes are an important motivation for the development and use of
methods beyond the classic finite element method, which include, for example, the discon-
tinuous Galerkin methods (including weak Galerkin [15] and ultra-weak methods [16–18]),
mimetic methods [19–21], and virtual element methods [22–25].

Classic conforming finite element methods have also been developed for use on
polygonal meshes, and especially for quadrilateral meshes. Approaches taken include the
use of maps from reference finite elements [26–28], restriction to low order elements [29–32],
the use of macro-elements [33], basis function enrichment [34–36], and construction using
barycentric coordinates [9,37–39]. Ideally, we would have families of conforming finite
elements defined for any order of accuracy. These would possess a minimal number of
degrees of freedom (DoFs) subject to conformity and accuracy constraints. Finite elements
based on the use of non-affine maps from reference finite elements display degraded
accuracy. Accuracy is restricted if only low order elements are defined. Macro-elements,
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basis function enrichment, and the use of barycentric coordinates in higher order cases
results in finite elements with an excess number of DoFs.

Families of conforming finite elements defined on polygons that maintain both accu-
racy and a minimal number of DoFs have appeared recently [40–43] (as well as some finite
elements in three dimensions [44–46]). The approach taken is to begin with the space of
polynomials Pr(E) of degree up to r defined directly on the physical element E to achieve
accuracy of order r + 1. To achieve conformity, one then adds in a space of supplemental
functions. A basis for the supplemental functions must have certain properties on ∂E, but
they must be defined over all of E by filling in the interior. The “supplemental function
space” is sometimes called the “filling space”.

In this paper, we discuss the construction of the supplemental functions, in the context
of the finite elements developed by the current authors in [43], which are called direct finite
elements. Let the element E = EN ⊂ R2 be a closed, nondegenerate, convex polygon with
N ≥ 3 edges. The direct serendipity finite elements of index r ≥ 1 are H1-conforming and
take the form

DS r(EN) = Pr(EN)⊕ SDSr (EN), (1)

where SDSr (EN) is the space of supplemental functions. The direct mixed finite elements
are H(div)-conforming and take two forms,

Vr
r(EN) = P2

r (EN) ⊕ xP̃r(EN) ⊕ SV
r (EN),

Vr−1
r (EN) = P2

r (EN) ⊕ SV
r (EN),

(2)

for full (r ≥ 0) and reduced (r ≥ 1) H(div)-approximation, respectively, where P̃r(EN) are
the homogeneous polynomials of (exact) degree r. These two finite elements are related to
each other by the finite element exterior calculus [47] through the de Rham complex

R ↪−→ H1 curl−−−→ H(div) div−−−→ L2 −→ 0, (3)

resulting in, for s = r− 1, r (s ≥ 0),

R ↪−→ DS r+1(EN)
curl−−−→ Vs

r(EN)
div−−−→ Ps(EN) −→ 0. (4)

The consequence is that

Vr
r(EN) = curlDS r+1(EN)⊕ xPr,

Vr−1
r (EN) = curlDS r+1(EN)⊕ xPr−1,

(5)

and, therefore,
SV

r (EN) = curlSDSr+1(EN). (6)

The original construction of supplemental functions made use of rational functions
(see (21)), which are difficult to numerically integrate accurately. As a consequence, when
solving a partial differential equation using direct finite elements, the quadrature error may
be significant, leading to poor overall approximation of the solution. This was observed
in [43], although in that paper, the degradation in the approximation was attributed to poor
mesh quality. While mesh quality remains an important ingredient in finite element analysis,
quadrature approximation is also a critical component, especially for high order methods.

In this work, we introduce two constructions of the supplemental functions SDSr (EN)
which involve using continuous piecewise polynomials. Such constructions are motivated
by the work of Kuznetsov and Repin [33], and suggested by the work of Cockburn and
Fu [41]. These new supplemental functions can then be accurately integrated by quadra-
ture rules. (A similar, but more complex, construction in three dimensions for cuboidal
hexahedra is discussed in [46]).
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In the next two sections we present some basic notation and review the general
definition of the original direct serendipity and direct mixed finite elements, which have
supplemental functions that are C∞-smooth. Our new families of direct finite elements
based on piecewise continuous supplemental functions are given in Section 4. We give two
constructions of the supplemental functions, so that one set lies in H1 and the other in Hp

for any integer p ≥ 1. The approximation properties of these new direct finite elements are
given in Section 5. The results are optimal, up to the bounding constant. The proof follows
that given in [43], and we concentrate on the modifications that are required to handle the
new supplements. In Section 6, we present numerical tests that compare the errors and
convergence rates of the new and original direct finite elements. We conclude the paper in
Section 7.

2. Notation

We choose to identify the edges and vertices of EN adjacently in the counterclockwise
direction, as depicted in Figure 1 (throughout the paper, we interpret indices modulo N).
Let the edges of EN be denoted ei, i = 1, 2, . . . , N, and the vertices be xv,i = ei ∩ ei+1. Let
νi denote the unit outer normal to edge ei, and let τi denote the unit tangent vector of ei
oriented in the counterclockwise direction, for i = 1, 2, . . . , N.

ν2

ν3

ν4

ν5

ν1

τ2

τ3

τ4
τ5

τ1

xv,2

xv,3

xv,4

xv,5

xv,1

E5

e2 e3

e4

e5

e1

Figure 1. A pentagon E5, with edges ei, outer unit normals νi, tangents τi, and vertices xv,i.

For any two distinct points y1 and y2, let L[y1, y2] be the line passing through y1 and
y2, and take ν[y1, y2] to be the unit vector normal to this line interpreted as going from y1
to y2 and then spinning 90 degrees in the clockwise direction (i.e., pointing to the right).
Then we define a linear polynomial giving the signed distance of x to L[y1, y2] as

λ[y1, y2](x) = −(x− y2) · ν[y1, y2]. (7)

To simplify the notation for linear functions that will be used throughout the paper, let
Li = L[xv,i−1, xv,i] be the line containing edge ei and let λi(x) give the distance of x ∈ R2

to edge ei opposite the normal direction, i.e.,

λi(x) = λ[xv,i−1, xv,i](x) = −(x− xv,i) · νi, i = 1, 2, . . . , N. (8)

These functions are strictly positive in the interior of EN , and λi vanishes on the edge ei.

3. Direct Serendipity and Mixed Finite Elements

The general development of direct serendipity and mixed finite elements is given
in [43]. The definition of the supplemental space SDSr (EN) in (1) is key to the construction.
For completeness, we review the definitions of these direct finite elements here.

When N = 3 (triangles), the direct serendipity supplemental space SDSr (E3) is empty.
When N ≥ 4 and 1 ≤ r < N − 2, the direct serendipity spaces DS r(EN) are defined as
subspaces of DSN−2(EN) by the rule

DS r(EN) =
{

ϕ ∈ DSN−2(EN) : ϕ|e ∈ Pr(e) for all edges e of EN
}

. (9)

Therefore, we only need to understand SDSr (EN) for r ≥ N − 2 and N ≥ 4.
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To define the supplemental basis functions, two series of choices must be made for
each i, j such that 1 ≤ i < j ≤ N and 2 ≤ j− i ≤ N− 2 (i.e., ei and ej are nonadjacent edges).
First, as shown in Figure 2, one must choose two distinct points x1

i,j ∈ Li and x2
i,j ∈ Lj that

avoid the intersection point xi,j = Li ∩ Lj, if it exists. Then let

λi,j(x) = λ[x1
i,j, x2

i,j](x) = −(x− x2
i,j) · νi,j, νi,j = ν[x1

i,j, x2
i,j], (10)

be the linear function associated to the line Li,j = L[x1
i,j, x2

i,j]. Second, Ri,j must be chosen
to satisfy

Ri,j(x)|ei = −1, Ri,j(x)|ej = 1. (11)

The supplemental space for r ≥ N − 2 ≥ 2 is of the form

SDSr (EN) = span
{

φs,i,j : 1 ≤ i < j ≤ N, 2 ≤ j− i ≤ N − 2
}

, (12)

φs,i,j =
(

∏
k 6=i,j

λk

)
λr−N+2

i,j Ri,j. (13)

x2,4e2
L2,4

L2
e4

L4

E5

λ2,4 =0 x1
2,4

x2
2,4

ν2,4e2 ∦ e4

e2

L2,4

L2

e4

L4

E5
λ2,4=

0
x1

2,4

x2
2,4

ν2,4

e2 ‖ e4

Figure 2. Illustration on E5 of the zero line L2,4 of λ2,4(x) = −(x− x2
2,4) · ν2,4 and the intersection

point x2,4 = L2 ∩ L4, if it exists.

3.1. Direct Serendipity Finite Elements

Every shape function of the direct serendipity finite element DS r(EN) is a sum of a
polynomial and a linear combination of the supplemental functions, as in (1). To implement
them, one must define the DoFs. For example, for ψ ∈ DS r(EN), one can take

ψ(xv,i), ∀i = 1, 2, . . . , N, (14)∫
ei

ψ p dσ, ∀p ∈ Pr−2(ei), i = 1, 2, . . . , N, (15)∫
EN

ψ q dx, ∀q ∈ Pr−N(EN), (16)

where dσ is the one dimensional surface measure. Alternatively, one can use nodal DoFs
(i.e., evaluation at a node point) in place of (15) and/or (16). For the former, on each edge
ei, its corresponding edge nodes are r− 1 points such that they, along with the two vertices,
are equally distributed on ei. For the latter, the interior cell nodes can be set to be the
Lagrange nodes of order r− N of a triangle that lies strictly inside EN .

The basis of DS r(EN) corresponding to the DoFs can be constructed. Given a com-
putational mesh of convex polygons Th over a domain Ω, the basis can be simply pieced
together to form a global H1-conforming basis of the space DS r(Ω) ⊂ H1(Ω).

3.2. Direct Mixed Finite Elements

As discussed in the introduction, full, Vr
r(EN), and reduced, Vr−1

r (EN), H(div)-
approximating mixed finite element spaces follow from a de Rham complex (3), where
the direct serendipity finite elements serve as the precursor (4). The supplemental space is
related to SDSr+1(EN) by the simple Formula (6).
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The DoFs for these spaces (with s = r ≥ 0 or s = r− 1 ≥ 0) can be taken to be∫
ei

v · νi p dσ, ∀p ∈ Pr(ei), i = 1, 2, . . . , N, (17)∫
EN

v · ∇q dx, ∀q ∈ Ps(EN), q not constant, (18)∫
EN

v ·ψψψ dx, ∀ψψψ ∈ BV
r (EN), if r ≥ N − 1, (19)

where the H1(EN) and H(div; EN) bubble functions, for r ≥ N − 1, are

Br+1(EN) = λ1λ2 . . . λNPr−N+1(EN) and BV
r (EN) = curlBr+1(EN). (20)

Given the mesh Th over Ω, one constructs the basis and the H(div)-conforming global
space Vs

r(Ω) ⊂ H(div) (see [43] for details). As an alternative, when solving partial
differential equations, one can use the hybrid form of the method [48], which does not
require the construction of global basis functions.

4. Piecewise Continuous Supplements

In [43], Ri,j satisfying (11) on EN , for 1 ≤ i < j ≤ N, 2 ≤ j− i ≤ N − 2, was taken to
be the simple rational function

Rrational
i,j (x) =

λi(x)− λj(x)
λi(x) + λj(x)

. (21)

These rational functions are smooth over the element. We now give new direct serendipity
and mixed finite elements by providing an alternate construction of Ri,j as a piecewise
continuous polynomial defined over a sub-partition of EN . We present two strategies, the
first of which is convenient for the construction of continuous supplemental functions in
H1(EN), and the second for constructing smoother supplemental functions in Hp(EN) for
integer p ≥ 1.

4.1. Supplemental Functions in H1(EN)

Our first strategy for constructing Ri,j requires a sub-triangulation of the element EN ,
and we present two natural choices. The first sub-triangulation is depicted in Figure 3 and
denoted as T n(EN). One picks a vertex xv,n and divides EN into N − 2 sub-triangles. The
sub-triangles are Tn

m with vertices xv,n, xv,m, and xv,m+1, where m = n + 1, . . . , n + N − 2.
For the second sub-triangulation, depicted in Figure 4 and denoted as T xc(EN), one picks
a point xc in the interior of EN and divides it into N sub-triangles. Now the sub-triangles
are Txc

m with vertices xc, xv,m, and xv,m+1, where m = 1, 2, . . . , N. We use the centroid of the
element for xc.

xv,5

xv,1

xv,2

xv,3

xv,4

T5
1

T5
2

T5
3

Figure 3. A sub-triangulation based on a common fixed vertex. Shown is T 5(E5) using the fixed
vertex xv,5.
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xc

xv,5

xv,1

xv,2

xv,3

xv,4

Txc
5

Txc
1 Txc

2

Txc
3

Txc
4

Figure 4. Sub-triangulation based on a center point. Shown is T xc (E5) using the centroid xc.

Let the piecewise polynomial function space of degree s corresponding to each sub-
triangulation be

Ps(T n(EN)) = { f ∈ C0(E) | f |Tn
m ∈ Ps(Tn

m), m = n + 1, . . . , n + N − 2}, (22)

Ps(T xc(EN)) = { f ∈ C0(E) | f |Txc
m
∈ Ps(Txc

m ), m = 1, 2, . . . , N}. (23)

We construct Ri,j in P1(T n(EN)) or P1(T xc(EN)), depending on which of the two sub-
triangulations is used, such that

Ri,j|ei = −1, Ri,j|ej = 1, Ri,j|vk = 0, ∀k 6= i− 1, i, j− 1, j. (24)

by using interpolation at the vertices of the sub-triangles. If the sub-triangulation is chosen
to be T n(EN), the restrictions (24) uniquely specify all the vertex values. However, if the
triangulation is T xc(EN), the center value is not determined, so we assign Ri,j(xc) = 0.

Our construction has Ri,j being −1 on ei and 1 on ej as required by (11). Moreover,
Ri,j ∈ H1(EN). After constructing the supplemental functions in (13) with this Ri,j, each
φs,i,j is in Pr+1(T n(EN)) or Pr+1(T xc(EN)), and therefore also in H1(EN).

4.2. Supplemental Functions in Hp(EN)

We now present the second of our two strategies for constructing Ri,j for two nonadja-
cent edges ei and ej. Recall that λk(x) is the linear polynomial giving the (signed) distance
to the line Lk extending edge ek. When ei and ej are parallel, we simply define Ri,j as the
linear polynomial

Ri,j =
λi − λj

λi(xv,j)
. (25)

When ei and ej are not parallel, we first define a sub-partition of EN by adding a single
extra line `i,j through a point xi,j as depicted in Figure 5. The point xi,j is chosen so that it is
closer to Lj than the endpoints of ei, i.e.,

λj(xi,j) ≤ min{λj(xv,i−1), λj(xv,i)}. (26)

The line `i,j passes through xi,j and is parallel to ej. This line divides EN into Ei,j,1
N near ei

and Ei,j,0
N near ej, i.e.,

Ei,j,1
N = EN ∩ {x | λj(x) ≥ λj(xi,j)}, (27)

Ei,j,0
N = EN ∩ {x | λj(x) < λj(xi,j)}. (28)

Let νi,j = −νj be the unit normal vector of `i,j pointing into Ei,j,1
N , and let τi,j = τj be a unit

tangent vector.



Mathematics 2023, 11, 4663 7 of 18

Ei,j,0
6

Ei,j,1
6

ei

ej

xv,i

xv,i−1

Lj `i,j

xi,j
νi,j

τi,j

Figure 5. A sub-division of E6 using the line `i,j.

We next construct the function ρi,j, which is 1 on edge ei and 0 on edge ej. It is defined
piecewise on the sub-partition of EN as

ρi,j(x) =


1, x ∈ Ei,j,1

N ,

1−
(

1−
λj(x)

λj(xi,j)

)p
, x ∈ Ei,j,0

N ,
(29)

where p ≥ 1 is an integer. The function is continuous, since λj(x) = λj(xi,j) on `i,j implies
that ρi,j|`i,j = 1 in either case of the definition. Moreover, in the tangential direction,

∂ρi,j

∂τi,j

∣∣∣
`i,j

= 0, (30)

and, in the normal direction,

∂ρi,j

∂νi,j (x) =


0, x ∈ Ei,j,1

N ,
p

λj(xi,j)

(
1−

λj(x)

λj(xi,j)

)p−1
, x ∈ Ei,j,0

N ,
(31)

which is continuous for p > 1, so ρi,j ∈ C1(EN). By iterating the argument, we have that
ρi,j ∈ Cp−1(EN) and so also in Hp(EN) for p > 1. If p = 1, ρi,j is continuous, so it is in
H1(EN).

Finally, after constructing both ρi,j and ρj,i, we define

Ri,j = ρj,i − ρi,j, (32)

which is −1 on ei, 1 on ej. Moreover, Ri,j ∈ Hp(EN). The supplemental functions in (13)
constructed with this Ri,j lie in Hp(EN).

We end this section with two specific examples, using the sub-partitions shown in
Figure 6, which divide EN by N lines. The first example has a sub-partition based on the
midpoints xM

e,i of the edges ei, i = 1, 2, . . . , N, and gives rise to the spaces denotedDSM
r (EN)

and VM,s
r (EN). We compute the minimal distance of the midpoints to the edges, i.e.,

hM = min
1≤i≤N,k=i±1

λi(xM
e,k). (33)

Then for any two non parallel and nonadjacent edges ei and ej, simply take the partition
line `i,j to be the line parallel to ej that is the fixed distance hM > 0 away and intersects EN .

The second specific example uses a sub-partition based on trisecting each edge, re-
sulting in the points, for edge ei, being denoted counterclockwise as xe,i,k for k = 1, 2,
i = 1, 2, . . . , N. In this case, we simply take xi,j to be the closest of these points to Lj,
omitting xe,j,1 and xe,j,2. We denote the resulting spaces DST

r (EN) and VT,s
r (EN).
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xv,5

xv,1

xv,2

xv,3

xv,4
xM

e,4hM

xv,5

xv,1

xv,2

xv,3

xv,4xe,5,2

xe,3,1

xe,4,1

xe,3,2

xe,4,2

Figure 6. The two sub-partitions of E5 used for constructing specific Hp supplemental functions. The
left one is used for DSM

r and VM,s
r , where hM = λ5(xM

e,4). The right one is used for DST
r and VT,s

r ,
where the closest trisection points are marked in red.

5. Approximation Properties

We discuss now the global approximation properties for our direct finite element
spaces. The results of [43] do not directly apply here because there it was assumed that
the functions Ri,j are smooth on the element. Consider a collection of meshes Th of convex
polygons partitioning a domain Ω, where h > 0 is the maximal element diameter.

We need to make the usual assumption that our collection of meshes is uniformly
shape regular [49] (pp. 104–105). For any EN ∈ Th, let hEN be its diameter. Denote by Ti,
i = 1, 2, . . . , N(N − 1)(N − 2)/6, the sub-triangle of EN with vertices being three of the N
vertices of EN , and define

ρEN = 2 min
1≤i≤N(N−1)(N−2)/6

{diameter of the largest circle inscribed in Ti}. (34)

The shape regularity parameter of the single mesh Th is

σTh = min
EN∈Th

ρEN

hEN

. (35)

Assumption 1. The collection of meshes {Th}h>0 is uniformly shape regular. That is, the shape
regularity parameters are bounded below by a positive constant: there exists σ∗ > 0, independent of
Th and h > 0, such that the ratio

ρEN

hEN

≥ σ∗ > 0 for all EN ∈ Th, h > 0. (36)

We also require some mild restrictions on the construction of SDSr (EN).

Assumption 2. For every EN ∈ Th, assume that the functions of SDSr (EN) are constructed using
λi,j such that the zero set Li,j intersects ei and ej. Moreover, suppose that Ri,j ∈ Hp(EN) for some
p ≥ 1 and that the sub-partitions introduced in Section 4 for their construction depend continuously
on the vertices of EN .

The continuous dependence requirement of the sub-partitions is met if we system-
atically choose the points xc in Section 4.1 (say as the centroid) and xi,j satisfying (26)
in Section 4.2 (say be taking xi,j as the closer endpoint of ei to Lj, or so that λj(xi,j) =
1
2 min{λj(xv,i−1), λj(xv,i)}).

We state first the approximation result for DS r(Ω).

Theorem 1. Let r ≥ 1, 1 ≤ p ≤ ∞, and ` > 1/p (or ` ≥ 1 if p = 1). If Assumptions 1 and 2
hold (so the basis functions are in Hp on each element), then there exists a constant C > 0, such
that for all functions v ∈W`,p(Ω),

inf
vh∈DSr(Ω)

‖v− vh‖Wm,p(Ω) ≤ C h`−m ‖v‖W`,p(Ω), 0 ≤ ` ≤ r + 1, m = 0, 1. (37)
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Proof. The methodology of the proof follows [42,43]. The key difference is that we must
relax the smoothness requirement made on the supplemental functions. We highlight the
differences, and leave the reader to consult [42,43] for some of the details.

Given a mesh Th, we construct an interpolation operator I r
h : W l

p(Ω) → DS r as a
generalization of that defined in [50]. To do so, we use a nodal set of DoFs for the finite
elements, and identify global nodal points ai, i = 1, 2, . . . , dimDS r. These nodal points
must be chosen systematically with respect to the vertices of the mesh, so they depend
continuously on them. The global nodal basis function for ai is denoted ϕi.

A geometry object Ki is associated to each ai. If ai lies in the interior of some element,
we choose the element to be Ki. Otherwise, we choose an edge containing ai to be Ki, where
we additionally ask that Ki ⊂ ∂Ω if ai ∈ ∂Ω. We use these to define the dual basis ψi
with respect to L2(Ki), i = 1, 2, . . . , dimDS r. The corresponding interpolation operator
I r

h : W l
p(Ω)→ DS r is then

I r
hv(x) =

dimDSr

∑
i=1

( ∫
Ki

ψi(y) v(y) dy
)

ϕi(x). (38)

There are two essential steps towards showing the approximation property. First, the
nodal basis functions are bounded,

max
1≤i≤dimDSr(Ω)

max
E∈Th
||ϕi||Wm

q (E) ≤ C, (39)

and, second, the dual basis functions are bounded up to a scaling factor,

||ψi||L∞(Ki)
≤ Ch−dim Ki

Ki
. (40)

We show the necessary boundedness by mapping the elements and using a continuity and
compactness argument.

As depicted in Figure 7, to each element EN , we associate a regular polygon (equilateral
and equiangular) ÊN . We can then define a map FEN : ÊN → EN as a composition of a
map that changes the geometry but not the size to ẼN , and then a scaling map (see [43] for
precise details).

(0, 0) Ê5
(1, 0)

x̂

FẼ5
−−−→

(0, 0) Ẽ5
(1, 0)

(v1, v2)

(v3, v4)
(v5, v6)

x̃
scaling
−−−→

xv,1 E5
xv,2

xv,3

xv,4

xv,5

x

Figure 7. An element E5 ∈ Th is shown on the right-hand side in its translated and rotated local
coordinates. It is the image of a regular reference polygon Ê5 on the left-hand side. The map is
decomposed into one that changes the geometry but not the size FẼ5

: Ê5 → Ẽ5, and a scaling map
x̃ 7→ Hx̃.

Define the nodal basis functions ϕẼN
i on ẼN . It is enough to show the boundedness of

their Wm
q norms. Although they are no longer smooth functions, compared to [42,43], they

are continuous on ẼN , and smooth on all the subregions generated by the sub-partition.
Moreover, by assumption the sub-partition is required to depend continuously on the

vertices of ẼN . Therefore, ϕẼN
i will still depend continuously on x̂ = F−1

ẼN
(x̃) and the

vertices of ẼN , which vary in a compact set. We conclude that the nodal basis functions
are bounded in Wm

q norm. The boundedness of ψi in the L∞ norm can be shown in a
similar way.
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For the mixed finite elements, we have the following result, wherein we see projection
operators π : H(div; Ω) ∩ (L2+ε(Ω))2 → Vs

r, s = r − 1, r, where ε > 0, and PWs , the
L2-orthogonal projection operator onto Ws = ∇ ·Vs

r.

Theorem 2. Let r = s ≥ 0 or r ≥ 1, s = r− 1. If Assumptions 1–2 hold, then there is a constant
C > 0, such that

‖v− πv‖L2(Ω) ≤ C ‖v‖Hk(Ω) hk, k = 1, . . . , r + 1, (41)

‖p−PWs p‖L2(Ω) ≤ C ‖p‖Hk(Ω) hk, k = 0, 1, . . . , s + 1, (42)

‖∇ · (v− πv)‖L2(Ω) ≤ C ‖∇ · v‖Hk(Ω) hk, k = 0, 1, . . . , s + 1, (43)

where s = r − 1 ≥ 0 and s = r ≥ 1 for reduced and full H(div)-approximation, respectively.
Moreover, the discrete inf-sup condition

sup
vh∈Vs

r

(wh,∇ · vh)

‖vh‖H(div)
≥ γ ‖wh‖L2(Ω), ∀wh ∈Ws, (44)

holds for some γ > 0 independent of h > 0.

For the proof, we define the projection operator π by piecing together local operators
πE that are defined in terms of the DoFs (17)–(19). The approximation properties given
in [42,43] hold with a similar proof, using now that the subregions generated by the
sub-partition depend continuously on the vertices of the element.

6. Numerical Results

We present numerical experiments for our new finite elements as applied to Poisson’s
equation

−∇ · (∇p) = f in Ω, (45)

p = 0 on ∂Ω, (46)

where f ∈ L2(Ω). The corresponding weak form finds p ∈ H1
0(Ω) such that

(∇p,∇q) = ( f , q), ∀q ∈ H1
0(Ω), (47)

where (·, ·) is the L2(Ω) inner product. Setting

u = −∇p, (48)

we have the mixed weak form, which finds u ∈ H(div; Ω) and p ∈ L2(Ω) such that

(u, v)− (p,∇ · v) = 0, ∀v ∈ H(div; Ω), (49)

(∇ · u, w) = ( f , w), ∀w ∈ L2(Ω). (50)

These weak forms naturally give rise to finite element approximations. According to
Theorems 1 and 2, the following convergence analysis holds by a standard argument [27,51].

Theorem 3. If Assumptions 1 and 2 hold, then there exists a constant C > 0, independent of Th
and h > 0, such that for r ≥ 1,

‖p− ph‖m,Ω ≤ C h`+1−m |p|`+1,Ω, ` = 0, 1, . . . , r, m = 0, 1, (51)
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where ph ∈ DS r(Ω) ∩ H1
0(Ω) approximates (47). Moreover, with r = s ≥ 0 or r ≥ 1, s = r− 1,

‖u− uh‖0,Ω ≤ C‖u‖k,Ωhk, k = 1, . . . , r + 1, (52)

‖p− ph‖0,Ω ≤ C‖u‖k,Ωhk, k = 1, . . . , s + 1, (53)

‖∇ · (u− uh)‖0,Ω ≤ C‖∇ · u‖k,Ωhk, k = 0, 1, . . . , s + 1, (54)

where (uh, ph) ∈ Vs
r × Ws approximates (49)–(50).

We perform our tests on a unit square domain Ω = [0, 1]2, and take the source term
f (x) = 2π2 sin(πx1) sin(πx2), so the exact solution is u(x1, x2) = sin(πx1) sin(πx2). We
consider five types of supplemental spaces. The original direct serendipity and mixed finite
element spaces will be denoted DSR

r and VR,s
r , respectively. These use supplements based

on the rational functions (21).
For the H1 supplemental functions introduced in Section 4.1, there are two varieties.

Denote the space using supplemental functions that are constructed based on the vertex
sub-triangulation as DSV

r and its corresponding mixed spaces as VV,s
r , and those based on

the center point sub-triangulation as DSC
r and VC,s

r , respectively. The spaces based on the
Hp supplements were described in Section 4.2 and denoted DSM

r , VM,s
r and DST

r , VT,s
r .

6.1. The Meshes Used

Approximate solutions are computed on a sequence of Voronoi meshes T 2
h generated

by the package PolyMesher [52]. Each mesh has n2 elements, which are generated with n2

random initial seeds and up to 104 smoothing iterations to improve the shape regularity.
For comparison to the results appearing in [43], we use the same mesh sequence T 2

h
with n = 6, 10, 14, 18, and 22. We show the meshes for n = 6 and n = 18 in Figure 8. The
shape regularity parameters are given in Table 1. Note that the n = 10 and n = 18 meshes
are the least regular.

n = 6 n = 18

Figure 8. Meshes with 6 × 6 and 18 × 18 elements.

Table 1. Shape regularity parameters for each mesh T 2
h .

n = 6 n = 10 n = 14 n = 18 n = 22

σTh 0.180 0.115 0.161 0.127 0.150

In [43] it was observed numerically that the n = 18 mesh performed well for the
original direct finite elements (using rational supplemental functions) when r = 2, 3, 4, but
had a degraded convergence rate when r = 5. The problem was resolved by removing
short edges from the n = 18 mesh. However, as we will see in this section, the problem is
actually due to inaccurate numerical quadrature of the rational supplemental functions,
which only showed up in those tests for the more refined mesh (i.e., not n = 10) and higher
values of r.
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6.2. Results for Direct Serendipity Spaces

We present and compare the results of the numerical tests performed for DSR
r , DSV

r ,
DSC

r , DSM
r , and DST

r , where r = 2, 3, 4, 5. We take p = 1 in Section 4.2 for the construction
of DSM

r and DST
r , because it gives better results than a larger p in most cases. According to

Theorem 3, we expect all those spaces to have the convergence rates r + 1 for L2 errors and r
for H1-seminorm errors. As Tables 2 and 3 suggests, the convergence rates at n = 10, 14, 22
for DSR

r are all slightly better than optimal in this test. However, we can observe a slower
convergence rate at n = 18 for DSR

r . (We interject that convergence rates are computed as
improvement from the previous mesh in our sequence.)

Table 2. L2 errors and convergence rates for DSR
r and DSC

r .

DSR
2 DSC

2 DSR
3 DSC

3
n error rate error rate error rate error rate

10 2.160 × 10−4 3.45 2.144 × 10−4 3.50 8.859 × 10−6 4.34 1.031 × 10−5 4.35
14 7.329 × 10−5 3.16 7.165 × 10−5 3.21 2.175 × 10−6 4.11 2.518 × 10−6 4.13
18 3.452 × 10−5 2.95 3.409 × 10−5 2.92 7.927 × 10−7 3.96 8.964 × 10−7 4.05
22 1.863 × 10−5 3.47 1.841 × 10−5 3.46 3.555 × 10−7 4.51 4.045 × 10−7 4.48

DSR
4 DSC

4 DSR
5 DSC

5
n error rate error rate error rate error rate

10 3.467 × 10−7 5.69 3.972 × 10−7 6.11 1.133 × 10−8 6.97 1.730 × 10−8 6.61
14 5.644 × 10−8 5.31 6.622 × 10−8 5.24 1.202 × 10−9 6.57 1.964 × 10−9 6.37
18 1.530 × 10−8 5.12 1.823 × 10−8 5.06 4.376 × 10−10 3.97 4.134 × 10−10 6.12
22 5.314 × 10−9 5.95 6.239 × 10−9 6.03 8.905 × 10−11 8.95 1.243 × 10−10 6.76

Table 3. H1-seminorm errors and convergence rates for DSR
r and DSC

r .

DSR
2 DSC

2 DSR
3 DSC

3
n error rate error rate error rate error rate

10 3.561 × 10−3 2.32 3.552 × 10−3 2.36 1.933 × 10−4 3.13 2.390 × 10−4 3.11
14 1.683 × 10−3 2.19 1.660 × 10−3 2.23 6.724 × 10−5 3.09 8.343 × 10−5 3.08
18 1.018 × 10−3 1.97 1.013 × 10−3 1.94 3.144 × 10−5 2.98 3.783 × 10−5 3.10
22 6.712 × 10−4 2.34 6.696 × 10−4 2.33 1.730 × 10−5 3.36 2.114 × 10−5 3.27

DSR
4 DSC

4 DSR
5 DSC

5
n error rate error rate error rate error rate

10 8.530 × 10−6 4.55 1.027 × 10−5 4.91 3.103 × 10−7 5.73 4.394 × 10−7 5.57
14 1.973 × 10−6 4.29 2.439 × 10−6 4.21 4.625 × 10−8 5.57 7.098 × 10−8 5.34
18 6.952 × 10−7 4.09 8.785 × 10−7 4.01 2.646 × 10−8 2.19 1.981 × 10−8 5.01
22 2.969 × 10−7 4.78 3.689 × 10−7 4.88 5.973 × 10−9 8.37 7.233 × 10−9 5.66

In Table 4, we compare the results for the n = 18 mesh of DSR
r , DSV

r , DSC
r , DSM

r ,
and DST

r . On the one hand, the results suggest that the new spaces are all approximately
optimal for r = 5, which is an obvious improvement compared to DSR

5 . On the other hand,
the errors for r = 2, 3, 4 of the new spaces are slightly worse than those of DSR

r , and among
all the new spaces, DSC

r has the best performance in error. We conclude that DSC
r shows

the best overall performance among all the spaces considered.
We suggest that the reason for such an observation is that the dominant errors for

r = 5 are from the numerical quadrature applied to the integration of rational functions,
especially on the elements that are less shape regular. However, for r = 2, 3, 4, the new
supplements, as piecewise polynomials, cannot approximate the shape of a smooth function
as well as the original rational supplements, especially those from DSM

r and DST
r , of which

Ri,j for ei ∦ ej are flat in the middle and oscillate near the boundary. In contrast, the
supplements from DSV

r and DSC
r are more reasonably shaped, and those from DSC

r are
better since its partition has sub-triangles that are more shape regular (as was shown in
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Figures 3 and 4). This argument is also supported by the observation that the results are
usually worse if we take larger p for DSM

r and DST
r , where the shape of the supplements

are even worse.

Table 4. Errors and convergence rates at n = 18 computed from the previous step n = 14, for the
direct serendipity spaces DSR

r , DSV
r , DSC

r , DSM
r , and DST

r .

r = 2 r = 3 r = 4 r = 5
Error Rate Error Rate Error Rate Error Rate

L2 errors and convergence rates

DSR
r 3.452 × 10−5 2.95 7.927 × 10−7 3.96 1.530 × 10−8 5.12 4.376 × 10−10 3.97

DSV
r 3.554 × 10−5 2.89 1.073 × 10−6 3.87 2.108 × 10−8 4.83 4.637 × 10−10 5.92

DSC
r 3.409 × 10−5 2.92 8.964 × 10−7 4.05 1.823 × 10−8 5.06 4.13 × 10−10 6.12

DSM
r 6.820 × 10−5 2.88 1.697 × 10−6 3.85 3.095 × 10−8 4.80 6.11 × 10−10 6.02

DST
r 7.072 × 10−5 2.92 1.866 × 10−6 4.04 3.367 × 10−8 4.91 5.83 × 10−10 6.07

H1-seminorm errors and convergence rates

DSR
r 1.018 × 10−3 1.97 3.144 × 10−5 2.98 6.952 × 10−7 4.09 2.646 × 10−8 2.19

DSV
r 1.059 × 10−3 1.89 4.199 × 10−5 2.93 9.959 × 10−7 3.85 2.184 × 10−8 4.80

DSC
r 1.013 × 10−3 1.94 3.783 × 10−5 3.10 8.785 × 10−7 4.01 1.981 × 10−8 5.01

DSM
r 1.976 × 10−3 1.88 6.334 × 10−5 3.01 1.590 × 10−6 3.95 3.076 × 10−8 4.83

DST
r 2.059 × 10−3 1.94 6.895 × 10−5 3.16 1.710 × 10−6 4.04 3.008 × 10−8 4.87

6.3. Results for Direct Mixed Spaces

We perform numerical tests for VR,s
r , VV,s

r , VC,s
r , VM,s

r , VT,s
r , for the full H(div)-

approximation spaces where r = s = 0, 1, 2, 3, and the reduced H(div)-approximation
spaces where r = 1, 2, 3, and s = r − 1. Since those mixed spaces are constructed from
corresponding direct serendipity spaces DS r+1, it is natural that we find the comparison
of the results similar to the small r cases discussed in Section 6.2. For all the spaces, we
can observe the convergence rates approximately optimal in general but the errors are
slightly worse for n = 18, especially when r = s = 3, as shown in Tables 5 and 6. All spaces
perform similarly well, although VR,s

r usually performs best in these tests. Among the new
spaces, VC,s

r performs a bit better, and it gives results close to those of VR,s
r . For reference,

we provide the numerical results for VC,s
r in Tables 7 and 8.

Table 5. Errors and convergence rates at n = 18 computed from the previous step n = 14, for the
reduced H(div)-approximation spaces VR,r−1

r , VV,r−1
r , VC,r−1

r , VM,r−1
r , and VT,r−1

r .

‖p− ph‖ ‖u− uh‖ ‖∇ · (u− uh)‖
Error Rate Error Rate Error Rate

r = 1, reduced H(div)-approximation

VR,0
1 7.039 × 10−2 1.01 5.428 × 10−3 1.98 6.988 × 10−2 0.99

VV,0
1 7.039 × 10−2 1.01 5.429 × 10−3 1.98 6.988 × 10−2 0.99

VC,0
1 7.039 × 10−2 1.01 5.443 × 10−3 1.98 6.988 × 10−2 0.99

VM,0
1 7.039 × 10−2 1.01 5.366 × 10−3 1.98 6.988 × 10−2 0.99

VT,0
1 7.039 × 10−2 1.01 5.362 × 10−3 1.98 6.988 × 10−2 0.99
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Table 5. Cont.

‖p− ph‖ ‖u− uh‖ ‖∇ · (u− uh)‖
Error Rate Error Rate Error Rate

r = 2, reduced H(div)-approximation

VR,1
2 2.614 × 10−3 1.96 8.492 × 10−5 2.92 2.614 × 10−3 1.96

VV,1
2 2.614 × 10−3 1.96 8.876 × 10−5 2.89 2.614 × 10−3 1.96

VC,1
2 2.614 × 10−3 1.96 8.850 × 10−5 2.87 2.614 × 10−3 1.96

VM,1
2 2.614 × 10−3 1.96 8.895 × 10−5 2.85 2.614 × 10−3 1.96

VT,1
2 2.614 × 10−3 1.96 8.973 × 10−5 2.85 2.614 × 10−3 1.96

r = 3, reduced H(div)-approximation

VR,2
3 6.515 × 10−5 2.96 1.887 × 10−6 3.90 6.515 × 10−5 2.96

VV,2
3 6.515 × 10−5 2.96 1.931 × 10−6 3.89 6.515 × 10−5 2.96

VC,2
3 6.515 × 10−5 2.96 1.911 × 10−6 3.89 6.515 × 10−5 2.96

VM,2
3 6.515 × 10−5 2.96 2.007 × 10−6 3.81 6.515 × 10−5 2.96

VT,2
3 6.515 × 10−5 2.96 2.105 × 10−6 3.83 6.515 × 10−5 2.96

Table 6. Errors and convergence rates at n = 18 computed from the previous step n = 14, for the full
H(div)-approximation spaces VR,r

r , VV,r
r , VC,r

r , VM,r
r , and VT,r

r .

‖p− ph‖ ‖u− uh‖ ‖∇ · (u− uh)‖
n Error Rate Error Rate Error Rate

r = 0, full H(div)-approximation

VR,0
0 7.030 × 10−2 1.01 2.701 × 10−2 1.10 6.988 × 10−2 0.99

VV,0
0 7.027 × 10−2 1.01 3.095 × 10−2 1.03 6.988 × 10−2 0.99

VC,0
0 7.028 × 10−2 1.01 2.951 × 10−2 1.03 6.988 × 10−2 0.99

VM,0
0 7.027 × 10−2 1.01 3.065 × 10−2 0.93 6.988 × 10−2 0.99

VT,0
0 7.026 × 10−2 1.01 3.163 × 10−2 0.92 6.988 × 10−2 0.99

r = 1, full H(div)-approximation

VR,1
1 2.614 × 10−3 1.96 4.895 × 10−4 2.19 2.614 × 10−3 1.96

VV,1
1 2.614 × 10−3 1.96 5.542 × 10−4 2.13 2.614 × 10−3 1.96

VC,1
1 2.614 × 10−3 1.96 5.226 × 10−4 2.17 2.614 × 10−3 1.96

VM,1
1 2.614 × 10−3 1.96 7.505 × 10−4 2.08 2.614 × 10−3 1.96

VT,1
1 2.614 × 10−3 1.96 7.917 × 10−4 2.15 2.614 × 10−3 1.96

r = 2, full H(div)-approximation

VR,2
2 6.515 × 10−5 2.96 8.818 × 10−6 3.10 6.515 × 10−5 2.96

VV,2
2 6.515 × 10−5 2.96 1.887 × 10−5 2.92 6.515 × 10−5 2.96

VC,2
2 6.515 × 10−5 2.96 1.526 × 10−5 3.03 6.515 × 10−5 2.96

VM,2
2 6.515 × 10−5 2.96 2.801 × 10−5 2.49 6.515 × 10−5 2.96

VT,2
2 6.515 × 10−5 2.96 3.010 × 10−5 2.67 6.515 × 10−5 2.96

r = 3, full H(div)-approximation

VR,3
3 1.182 × 10−6 3.99 2.144 × 10−7 3.65 1.182 × 10−6 3.99

VV,3
3 1.182 × 10−6 3.99 3.324 × 10−7 3.43 1.182 × 10−6 3.99

VC,3
3 1.182 × 10−6 3.99 2.933 × 10−7 3.50 1.182 × 10−6 3.99

VM,3
3 1.183 × 10−6 3.99 1.254 × 10−6 3.10 1.182 × 10−6 3.99

VT,3
3 1.183 × 10−6 3.99 1.547 × 10−6 3.61 1.182 × 10−6 3.99
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Table 7. Errors and convergence rates in L2 for VC,r−1
r .

‖p− ph‖ ‖u− uh‖ ‖∇ · (u− uh)‖
n Error Rate Error Rate Error Rate

r = 1, reduced H(div)-approximation

10 1.290 × 10−1 1.24 1.775 × 10−2 2.29 1.260 × 10−1 1.15
14 9.109 × 10−2 1.02 9.024 × 10−3 1.98 9.001 × 10−2 0.98
18 7.039 × 10−2 1.01 5.443 × 10−3 1.98 6.988 × 10−2 0.99
22 5.736 × 10−2 1.15 3.630 × 10−3 2.28 5.708 × 10−2 1.14

r = 2, reduced H(div)-approximation

10 8.635 × 10−3 2.23 5.210 × 10−4 3.28 8.634 × 10−3 2.23
14 4.308 × 10−3 2.04 1.841 × 10−4 3.04 4.308 × 10−3 2.03
18 2.614 × 10−3 1.96 8.850 × 10−5 2.87 2.614 × 10−3 1.96
22 1.715 × 10−3 2.37 4.772 × 10−5 3.47 1.715 × 10−3 2.37

r = 3, reduced H(div)-approximation

10 3.881 × 10−4 3.38 2.021 × 10−5 4.39 3.881 × 10−4 3.38
14 1.384 × 10−4 3.02 5.151 × 10−6 4.00 1.384 × 10−4 3.02
18 6.515 × 10−5 2.96 1.911 × 10−6 3.89 6.515 × 10−5 2.96
22 3.507 × 10−5 3.48 8.432 × 10−7 4.60 3.507 × 10−5 3.48

Table 8. Errors and convergence rates in L2 for VC,r
r .

‖p− ph‖ ‖u− uh‖ ‖∇ · (u− uh)‖
n Error Rate Error Rate Error Rate

r = 0, full H(div)-approximation

10 1.281 × 10−1 1.20 6.389 × 10−2 1.54 1.260 × 10−1 1.15
14 9.086 × 10−2 1.01 3.832 × 10−2 1.50 9.001 × 10−2 0.98
18 7.028 × 10−2 1.01 2.951 × 10−2 1.03 6.988 × 10−2 0.99
22 5.731 × 10−2 1.15 2.145 × 10−2 1.79 5.708 × 10−2 1.14

r = 1, full H(div)-approximation

10 8.635 × 10−3 2.23 2.003 × 10−3 2.65 8.634 × 10−3 2.23
14 4.308 × 10−3 2.04 9.076 × 10−4 2.32 4.308 × 10−3 2.03
18 2.614 × 10−3 1.96 5.226 × 10−4 2.17 2.614 × 10−3 1.96
22 1.715 × 10−3 2.37 3.320 × 10−4 2.55 1.715 × 10−3 2.37

r = 2, full H(div)-approximation

10 3.881 × 10−4 3.38 1.007 × 10−4 3.47 3.881 × 10−4 3.38
14 1.384 × 10−4 3.02 3.303 × 10−5 3.26 1.384 × 10−4 3.02
18 6.515 × 10−5 2.96 1.526 × 10−5 3.03 6.515 × 10−5 2.96
22 3.507 × 10−5 3.48 7.889 × 10−6 3.71 3.507 × 10−5 3.48

r = 3, full H(div)-approximation

10 1.294 × 10−5 4.60 3.537 × 10−6 4.84 1.294 × 10−5 4.60
14 3.270 × 10−6 4.03 7.157 × 10−7 4.68 3.270 × 10−6 4.03
18 1.182 × 10−6 3.99 2.933 × 10−7 3.50 1.182 × 10−6 3.99
22 5.219 × 10−7 4.60 1.301 × 10−7 4.57 5.219 × 10−7 4.60

7. Conclusions

We reviewed the construction of direct serendipity and mixed finite elements on non-
degenerate, planar convex polygons. The direct serendipity finite element spaces are of
the form

DS r(EN) = Pr(EN)⊕ SDSr (EN). (55)
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The full and reduced H(div)-approximation mixed finite element spaces are obtained from
a de Rham complex, where the direct serendipity finite elements serve as a precursor. The
mixed spaces are of the form

Vr
r(EN) = P2

r (EN) ⊕ xP̃r(EN) ⊕ SV
r (EN),

Vr−1
r (EN) = P2

r (EN) ⊕ SV
r (EN),

(56)

where
SV

r (EN) = curlSDSr+1(EN). (57)

We presented two approaches to construct the supplemental functions in SDSr (EN)
as piecewise polynomials. The first approach divides a polygonal element EN into sub-
triangles, and constructs the supplements as continuous piecewise polynomials that lie in
H1(EN). The second approach has a more complicated subdivision of EN that needs to be
treated carefully. However, it provides a framework for constructing supplements that lie
in Hp(EN) for any p ≥ 1.

The approximation properties of the new finite elements were proved under the regu-
larity assumption of the mesh sequences and some mild restrictions on the construction.

We performed numerical tests on a randomly generated mesh sequence and compared
results for five different ways of constructing the supplemental functions, including the
original construction using smooth but rational functions. The comparison suggested that
it is better to use the piecewise polynomial supplements rather than the rational supple-
ments for higher order r. Although the rational supplements are smooth and so tend to
approximate better, noticeable errors could be seen due to inaccurate numerical integration,
especially on meshes with short edges. Among the new spaces, it was found that the spaces
with supplements based on the center point sub-triangulation (23) performed best.
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