
Direct Serendipity Finite Elements

on Cuboidal Hexahedra

Todd Arbogast1,2* and Chuning Wang1

1Department of Mathematics, University of Texas at Austin, C1200,
Austin, Texas, 78712-1202, U.S.A.

2Oden Institute for Computational Engineering and Sciences, University
of Texas at Austin, C0200, Austin, Texas, 78712-1229, U.S.A.

*Corresponding author(s). E-mail(s): arbogast@oden.utexas.edu;
Contributing authors: cwangaw@utexas.edu;

Abstract

We construct direct serendipity finite elements on general cuboidal hexahedra,
which are H1-conforming and optimally approximate to any order. The new finite
elements are direct in that the shape functions are directly defined on the phys-
ical element. Moreover, they are serendipity by possessing a minimal number of
degrees of freedom satisfying the conformity requirement. Their shape function
spaces consist of polynomials plus supplemental functions, where the polyno-
mials are included for the approximation property and supplements are added
to achieve H1-conformity. The finite elements are fully constructive. The shape
function spaces of higher order r ≥ 3 are developed first, and then the lower
order spaces are constructed as subspaces of the third order space. Under a shape
regularity assumption, and a mild restriction on the choice of supplemental func-
tions, we develop the convergence properties of the new direct serendipity finite
elements. Numerical results with different choices of supplements are compared
on two mesh sequences, one regularly distorted and the other one randomly dis-
torted. They all possess a convergence rate that aligns with the theory, while a
slight difference lies in their performance.

Keywords: hexahedral mesh, serendipity finite elements, direct finite elements,
conforming finite elements, optimal approximation, convergence
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1 Introduction

The seminal book of Wachspress in 1975 [1] has focused interest in defining H1-
conforming finite elements on polytopal elements, in particular, on polygons and
polyhedra. Polytopal meshes have been used in many areas of application with the
advantage of its flexibility. For just two examples, in applications to topology opti-
mization [2, 3] and fracture propagation [4, 5], randomly generated polytopal elements
were seen to reduce the bias that is associated to standard meshes.
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There are many approaches for numerically solving partial differential equations on
polyhedral meshes. Of course, the nonconforming discontinuous Galerkin (DG) meth-
ods can be posed on polyhedral meshes [6, 7], and this is also the case for the related
weak Galerkin methods [8]. An interesting approach to construct finite elements on
polytopes is introduced in [9–11] by considering broken ultraweak variational for-
mulations and applying the discontinuous Petrov-Galerkin (DPG) methodology [12].
The discretization applies classical broken test and trial spaces; however, it uses more
than the minimal number of degrees of freedom (DoFs) required for H1-conformity
(see Section 3 below). Although the framework is not H1-conforming for a general
polyhedral element, a conforming approximation is provided of any optimal order of
accuracy r as long as the elements have triangular or quadrilateral faces.

The mimetic methods, a type of finite volume method, have been defined on polyhe-
dra in [13]. They mimic the properties of the differential operators such as the discrete
divergence theorem. However, they represent the solution only at DoFs (i.e., they do
not provide a basis for interpolation). The virtual element methods [14] seem to have
grown out of the mimetic methods. They do not provide a basis for interpolation but
possess a virtual (i.e., not computable) and conforming underlying finite element basis.
However, they usually require the addition of a problem dependent stabilization term
in the equations to control the unknown virtual components of the solution.

One may desire a conforming approximation with an explicit finite element basis in
many instances. The latter is particularly helpful when dealing with nonlinear partial
differential equations and coupled systems of equations. They are more fundamental
for application since they provide a general framework for interpolation and approx-
imation of functions, independent of how they are used. For example, they could be
applied to data interpolation and visualization. However, there are currently not many
good H1-conforming polyhedral finite elements.

Serendipity finite elements defined on cubes by Arnold and Awanou [15], denoted
as Sr(Ê), r ≥ 1, are well known to be H1-conforming and approximate to order
r + 1 with a minimal number of DoFs. However, they lose optimal order accuracy
when mapped to a cuboidal hexahedron, which is defined as a three dimensional
non-degenerate hexahedron with flat faces that can be obtained by a trilinear map
from a reference cube. Tensor product spaces on a cube, on the other hand, maintain
optimal approximation properties while mapped to a cuboidal hexahedron. However,
they suffer from using an excessive number of DoFs.

In this work, we construct direct serendipity finite elements on a cuboidal
hexahedron E, which are of the form

DSr(E) = Pr(E)⊕ SDSr (E), r ≥ 1, (1)

where Pr(E) is the space of polynomials on E up to degree r, and SDSr (E) consists
of supplemental functions. The construction is based on the previous work of the
authors on developing direct serendipity finite elements for two dimensional convex
polygons [16, 17]. The complicated geometry of a three dimensional hexahedron makes
the construction more subtle and intricate. We develop the approximation properties
of the new finite elements, and evaluate their performance through numerical tests.
Our work may also provide a methodology for future development of conforming finite
elements on more general polyhedra, and possibly H(curl)-conforming finite elements
on cuboidal hexahedra in the de Rham sequence [18].

One interesting use of our new direct serendipity finite elements is in application
to enriched Galerkin (EG) methods [19, 20], in which continuous finite elements are
enriched with piecewise discontinuous constants to maintain local mass conservation.
They have fewer degrees of freedom than DG methods, so they are easier to solve
[20]. Implementation using direct serendipity spaces can make the method even more
efficient [21].
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The rest of the paper is organized as follows. We introduce some notation and
preliminaries in Section 2. We count the minimum number of degrees of freedom needed
for H1-conformity in Section 3. To illustrate the key idea, we first construct the direct
serendipity space for r = 3 in Section 4. We extend the construction to general higher
order r ≥ 3 cases in Section 5. The lower order r = 1, 2 direct serendipity elements
are then constructed in Section 6 as subsets of the r = 3 case. Section 7 is included
to describe how to construct certain special functions needed in Sections 4–5. Some
additional restrictions are introduced in Section 8 to make the finite elements H1-
conforming on the entire domain. We prove the approximation properties in Section 9
and discuss the numerical results in Section 10. Finally, in Section 11 we summarize
our results and propose some suggestions for future work.

2 Notation and preliminaries

Let Pr(ω) denote the space of polynomials of degree up to r on ω ⊂ Rd, where d = 0
(a point), 1, 2, or 3. Recall that

dimPr(Rd) =

(
r + d
d

)
=

(r + d)!

r! d!
. (2)

Let P̃r(ω) denote the space of homogeneous polynomials of degree r on ω. Then

dim P̃r(Rd) =

(
r + d− 1
d− 1

)
=

(r + d− 1)!

r! (d− 1)!
, d ≥ 1. (3)

Let the element E ⊂ R3 be a closed, nondegenerate, convex cuboidal hexahedron
(i.e., a quadrilaterally-faced hexahedron), with 6 faces, 12 edges, and 8 vertices. The
hexahedron E is nondegenerate in that it does not degenerate to any polyhedron with
fewer faces, edges, or vertices, neither to a polygon, line segment, nor a point. We
choose to identify the faces of E based on the mapping from a reference element Ê as
depicted in Fig. 1. Note that this is only for the convenience of indexing.

Let the faces of E be denoted as fn, n = ±1,±2,±3. Let the reference element Ê
be [−1, 1]3, with faces denoted as f̂n, n = ±1,±2,±3. Define the trilinear and bijective
map FE : Ê → E that maps the faces of Ê to those of E, such that

f̂−1 = Ê ∩ {x̂ = −1} FE−−→ f−1, f̂1 = Ê ∩ {x̂ = 1} FE−−→ f1,

f̂−2 = Ê ∩ {ŷ = −1} FE−−→ f−2, f̂2 = Ê ∩ {ŷ = 1} FE−−→ f2, (4)

f̂−3 = Ê ∩ {ẑ = −1} FE−−→ f−3, f̂3 = Ê ∩ {ẑ = 1} FE−−→ f3.

For i = ±1, j = ±2, and k = ±3, denote the edges of E as

ej,k = fj ∩ fk, ei,k = fi ∩ fk, ei,j = fi ∩ fj , (5)

and the vertices as vi,j,k = fi ∩ fj ∩ fk, as shown in Fig. 1. Also let νn denote the unit
outer normal to face fn for n = ±1,±2,±3.

Denote F 0
E as the pullback map induced from F−1

E . To be more precise, F 0
E takes

a function φ̂ defined on Ê to a function φ defined on E by the rule

φ(x) = F 0
E (φ̂)(x) = φ̂(x̂), (6)
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where x = FE(x̂). We require special functions Rx, Ry, and Rz satisfying

Rx =

{
−1, on f−1,

1, on f1,
Ry =

{
−1, on f−2,

1, on f2,
Rz =

{
−1, on f−3,

1, on f3.
(7)

For instance, they could be defined as pullback maps

Rx(x) = x̂, Ry(x) = ŷ, Rz(x) = ẑ, where x̂ = F−1
E (x) = (x̂, ŷ, ẑ). (8)

(1,−1,−1) (1, 1,−1)

(1, 1, 1)

(1,−1, 1)

(−1, 1,−1)

(−1, 1, 1)

(−1,−1,−1)

(−1,−1, 1)

Ê
FE
−−−→

v1,−2,−3 v1,2,−3

v1,2,3v1,−2,3

v−1,−2,−3 v−1,2,−3

v−1,−2,3

v−1,2,3

E

e1,−3

e1,2

e2,−3

e1,−2

e−2,3

e−1,3

e−1,2
e1,3

e2,3

e−1,−3

e−2,−3

e−1,−2
f−1

f−2

f−3

f3

f2

f1

Fig. 1 A reference element Ê = [−1, 1]3 and a cuboidal hexahedron E, with faces f̂i and fi, as well
as vertices (−1,−1,−1) and v−1,−2,−3, etc., respectively. The notation of each vertex, edge, and face
of E is shown correspondingly in the top right picture, the bottom left picture, and the bottom right
picture.

Define λn as the distance of a point to the face fn,

λn(x) = −(x− xfn) · νn, n = ±1,±2,±3, (9)

where xfn is any point on the face fn. Note that λn does not depend on the choice of
xfn . Define linear functions λx, λy, and λz such that the zero plane Px of λx intersects
the four edges e±2,±3, and that of λy, denoted as Py, intersects e±1,±3. Similarly,
the zero plane of λz, denoted as Pz, intersects e±1,±2 . Notice that for some special
geometry, such a definition has a possibility of forming linearly dependent λx, λy, and
λz. Taking the cube as an example, note that v−1,−2,−3, v1,−2,−3, v1,2,3, and v−1,2,3

form a plane, and this plane could be taken both as Py and Pz. Therefore, we also
ask Px, Py, and Pz not to coincide. These linear functions form bases for spaces of
polynomials.
Lemma 2.1. Let the polynomial degree be r ≥ 0.

1. For i = ±1, j = ±2, and k = ±3, {λsx|ej,k , s = 0, 1, . . . , r}, {λsy|ei,k , s =
0, 1, . . . , r}, and {λsz|ei,j , s = 0, 1, . . . , r} form bases for Pr(ej,k), Pr(ei,k), and
Pr(ei,j), respectively.

2. For i = ±1, j = ±2, and k = ±3, {λs1y λs2z |fi , 0 ≤ s1 + s2 ≤ r}, {λs1x λs2z |fj , 0 ≤
s1 + s2 ≤ r}, and {λs1x λs2y |fk , 0 ≤ s1 + s2 ≤ r} form bases for Pr(fi), Pr(fj), and
Pr(fk), respectively.
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3. The polynomials λs1x λ
s2
y λ

s3
z with 0 ≤ s1 + s2 + s3 ≤ r form a basis for Pr(E).

Proof. Part 1. By construction, ej,k ∦ Px for j = ±2 and k = ±3, so λx|ej,k is linear
with nonzero slope. Therefore, its powers λsx with s = 0, 1, . . . , r form a basis for
Pr(ej,k). The proof for the other edges follows by symmetry.

Part 2. We need to show that if p =
∑r

s2=0

∑r−s2
s1=0 cs1,s2λ

s1
y λ

s2
z = 0 on fi for i = −1

or 1, then cs1,s2 = 0, ∀0 ≤ s1 + s2 ≤ r. Recall that λy|Py = λz|Pz = 0, and both Py
and Pz intersects fi along some line. Therefore,

p|fi∩Py =

r∑
s2=0

c0,s2λ
s2
z = 0, (10)

p|fi∩Pz =

r∑
s1=0

cs1,0λ
s1
y = 0. (11)

We conclude c0,s2 = cs1,0 = 0, ∀s1, s2 = 0, 1, . . . , r using part 1 of the lemma. Now we
have

p =

r−1∑
s2=1

r−s2∑
s1=1

cs1,s2λ
s1
y λ

s2
z = λyλz p1, with p1 =

r−1∑
s2=1

r−s2∑
s1=1

cs1,s2λ
s1−1
y λs2−1

z . (12)

By λyλz 6= 0 in the interior of fi, p|fi = 0 is equivalent to p1|fi = 0. Therefore,

p1|fi∩Py
=

r−1∑
s2=1

c1,s2λ
s2−1
z = 0, (13)

p1|fi∩Pz
=

r−1∑
s1=1

cs1,1λ
s1−1
y = 0, (14)

and again in analogy to part 1 of the lemma (for r − 2) shows c1,s2 = cs1,1 = 0,
∀s1, s2 = 1, 2, . . . , r − 1. We can continue the argument and finally obtain cs1,s2 = 0
for all 0 ≤ s1 +s2 ≤ r. The proof for the bases on the other faces follows by symmetry.

Part 3. The idea of proof for part 3 is the same as in part 2, where we restrict the
polynomial to a lower dimensional object. If on E we have∑

0≤s1+s2+s3≤r

cs1,s2,s3λ
s1
x λ

s2
y λ

s3
z = 0, (15)

then we must have on Px, where λx = 0, only terms with s1 = 0, i.e.,∑
0≤s2+s3≤r

c0,s2,s3λ
s2
y λ

s3
z = 0. (16)

By a similar proof as in part 2 for faces, we can also show that {λs2y λs3z |Px , 0 ≤
s2 + s3 ≤ r} forms a basis for Pr(Px). Therefore, in (15), c0,s2,s3 = 0 , and similarly,
cs1,0,s3 = cs1,s2,0 = 0. Then

p =

r−2∑
s3=1

r−1−s3∑
s2=1

r−s2−s3∑
s1=1

cs1,s2,s3λ
s1
x λ

s2
y λ

s3
z = λxλyλz p1, (17)

with p1 =

r−2∑
s3=1

r−1−s3∑
s2=1

r−s2−s3∑
s1=1

cs1,s2,s3λ
s1−1
x λs2−1

y λs3−1
z .
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We repeat the previous step of restricting the function to Px, Py, and Pz, obtaining
that c1,s2,s3 = cs1,1,s3 = cs1,s2,1 = 0. Continuing this procedure, we finally conclude
that all the coefficients are zero.

Later, in Section 4 we will need to understand the restriction of λn for n ∈
{±1,±2,±3} to the edges.
Lemma 2.2. For i = ±1, j = ±2, k = ±3 and n ∈ {±1,±2,±3}, let Aj,kn,x, Ai,kn,y, and

Ai,jn,z satisfy

λn|ej,k = Aj,kn,x +Bj,kn,x λx|ej,k , (18)

λn|ei,k = Ai,kn,y +Bi,kn,y λy|ei,k , (19)

λn|ei,j = Ai,jn,z +Bi,jn,z λz|ei,j . (20)

Then Aj,k−j,x, Aj,k−k,x, Ai,k−i,y, Ai,k−k,y, Ai,j−i,z, and Ai,j−j,z are strictly positive.

Proof. By Lemma 2.1, it is possible to define the restriction of λn on each edge in the
form (18)–(20). The strict positivity of Aj,k−j,x, Aj,k−k,x, Ai,k−i,y, Ai,k−k,y, Ai,j−i,z, and Ai,j−j,z
is due to the geometry of a convex hexahedron.

In Section 5, we will also need to understand the restriction of λn to the faces.
Lemma 2.3. For n ∈ {±1,±2,±3}, the following expressions hold for appropriate
coefficients:

λn|f±1 = A±1
n,yz +B±1

n,yzλy|f±1 + C±1
n,yzλz|f±1 ; (21)

λn|f±2
= A±2

n,xz +B±2
n,xzλx|f±2

+ C±2
n,xzλz|f±2

; (22)

λn|f±3
= A±3

n,xy +B±3
n,xyλx|f±3

+ C±3
n,xyλy|f±3

. (23)

Moreover, A1
−1,yz, A−1

1,yz, A2
−2,xz, A−2

2,xz, A3
−3,xy, and A−3

3,xy are strictly positive.
The proof is similar to that for the previous lemma.
To conclude this section, we recall from Ciarlet’s definition [22] of a finite element

(E,P,N ) that we need P, a finite-dimensional space of functions on E, and N =
{N1, N2, . . . , NdimP}, a basis for P ′, for which the members are referred to as degrees
of freedom (DoFs). That N is a basis for P ′ is equivalent to saying that the DoFs are
unisolvent, i.e., if ψ ∈ P satisfies Nj(ψ) = 0, ∀j = 1, 2, . . . ,dimP, then ψ = 0.

3 Geometric decomposition and degrees of freedom

For approximation purposes, we ask that Pr(E) ⊂ DSr(E). By a geometric decom-
position of E as shown in Table 1, the total number of DoFs for r = 1 and r = 2 is

Dr =

{
8 = dimP1(E) + 4, if r = 1,

20 = dimP2(E) + 10, if r = 2,
(24)

which means we need 4 linearly independent supplements for DS1(E) and 10 for
DS2(E). When r ≥ 3, the total number of DoFs is

Dr = 8+12(r−1)+3(r−2)(r−3)+
1

6
(r−3)(r−4)(r−5) = dimPr(E)+3(r+1). (25)

We view DS1(E) and DS2(E) as special cases, and start with the construction for
r ≥ 3, where we need to define exactly 3(r+1) linearly independent supplemental func-
tions. We have many choices, and each choice give a unique serendipity space. In this
paper, we give particular constructions, and show their conformity and unisolvence.
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Table 1 Geometric decomposition and number of degrees of freedom (DoFs)
associated to each geometric object of a cuboidal hexahedron E for a serendipity
element of index r ≥ 1.

Dimension Object Object DoFs per Total
Name Count Object DoFs

0 vertex 8 1 8
1 edge 12 dimPr−2(R) 12(r − 1)
2 face 6 dimPr−4(R2) 3(r − 2)(r − 3), if r ≥ 2
3 interior 1 dimPr−6(R3) 1

6
(r − 3)(r − 4)(r − 5), if r ≥ 3

The DoFs for φ ∈ DSr(E) are given by

φ(v), for all the vertices v, (26)∫
e

φ q, ∀q ∈ Pr−2(e), for all the edges e, (27)∫
f

φ q, ∀q ∈ Pr−4(f), for all the faces f, (28)∫
E

φ q, ∀q ∈ Pr−6(E). (29)

The unisolvence of the DoFs will be clear after we construct the basis functions. Note
that we can also take DoFs to be nodal evaluation, and construct the corresponding
nodal basis functions. These will assist the development of the approximation theory
later in Section 9.

4 Finite element space and basis functions for r = 3

We illustrate our finite elements with an explicit construction for the simplest case
r = 3, which has 32 DoFs, including 8 vertex DoFs and 24 edge DoFs. For vertex
DoFs, the corresponding basis functions φvi,j,k, where i = ±1, j = ±2, and k = ±3,
will be defined later such that

φvi,j,k(x) =

{
1 at vi,j,k,

0 at all the other vertices.
(30)

Edges and their DoFs are divided into three sets of 4 edges between opposite faces.
For i = ±1, j = ±2, k = ±3, and s = 0, 1, denote the corresponding basis functions
for each set of DoFs as φei,j;s, φ

e
j,k;s, and φei,k;s respectively. These will be defined later

so that

φej,k;s(x) =

{
λ−1λ1λ

s
x, ∀x ∈ ej,k,

0, ∀x ∈ fn, n 6= j, k.
(31)

φei,k;s(x) =

{
λ−2λ2λ

s
y, ∀x ∈ ei,k,

0, ∀x ∈ fn, n 6= i, k.
(32)

φei,j;s(x) =

{
λ−3λ3λ

s
z, ∀x ∈ ei,j ,

0, ∀x ∈ fn, n 6= i, j.
(33)

The set of these functions are linearly independent according to Lemma 2.1.
The finite element requires a supplemental function space SDS3 (E) such that

DS3(E) = P3(E)⊕ SDS3 (E) (34)

= span{φvi,j,k, φej,k;s, φ
e
i,k;s, φ

e
i,j;s | i = ±1, j = ±2, k = ±3, s = 0, 1}.
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4.1 The serendipity space on a cube

We first review the construction of DS3(Ê) for Ê = [−1, 1]3 a cube [15]. The vertex
basis function φvi,j,k with the property (30) is

φvi,j,k(x̂, ŷ, ẑ) =
1

8
(1 + sign(i)x̂) (1 + sign(j)ŷ) (1 + sign(k)ẑ) ∈ P3, (35)

with the sign function defined as sign(i) = i/|i|. For edge basis functions, we present
those for the DoFs on ê±1,±2 as an example. If i = ±1 and j = ±2, the two edge basis
functions φei,j;s for s = 0, 1 are defined as

φei,j;s(x̂, ŷ, ẑ) =
1

4
ẑs(1− ẑ2) (1 + sign(i)x̂) (1 + sign(j)ŷ) ∈ P5. (36)

All the vertex basis functions are in P3(Ê) and require no supplemental functions.
However, in the construction of φe±1,±2;1, there are 3 supplemental functions which are
linearly independent polynomials with degree greater than r = 3, namely

ẑ(1− ẑ2){x̂, ŷ, x̂ŷ}. (37)

The construction of φe±1,±2;0, has one polynomial with the highest degree greater than
r = 3, which is

(1− ẑ2)x̂ŷ. (38)

Similarly, there are also 4 supplements each for constructing φe±1,±3;s and φe±2,±3;s,

s = 0, 1. All the basis functions belong to the space P3(Ê)⊕ SDS3 (Ê) and are linearly
independent, since they each correspond to a degree of freedom.

4.2 Vertex basis functions

The next step is to generalize the construction to a cuboidal hexahedron E. It is
straightforward to generalize the eight vertex basis functions as

φvi,j,k(x) =
λ−i(x)λ−j(x)λ−k(x)

λ−i(vi,j,k)λ−j(vi,j,k)λ−k(vi,j,k)
∈ P3, (39)

for i = ±1, j = ±2, and k = ±3.

4.3 Supplemental functions

In accordance with the serendipity element for a reference cube, the 24 edge basis
functions are divided into 3 groups φe±1,±2;s, φ

e
±1,±3;s, and φe±2,±3;s. The construction

of each group will involve four supplements, of which three functions are for s = 1,
and one function is for s = 0.

On a cube, the serendipity element restricted to any lower-dimensional geometry
object coincides with a serendipity element defined directly on that object [15]. We
aim to construct φej,k;s, φ

e
i,k;s, and φei,j;s on a cuboidal hexahedron in such a way that

they restrict to a 2D direct serendipity space on each face. The 2D direct serendipity
spaces are defined in [16], and these are, for any r ≥ 2,

DS(2)
r (fi) = Pr(fi)⊕ span{λ−2λ2λ

r−2
y Rz |fi , λ−3λ3λ

r−2
z Ry |fi}, i = ±1, (40)

DS(2)
r (fj) = Pr(fj)⊕ span{λ−1λ1λ

r−2
x Rz |fj , λ−3λ3λ

r−2
z Rx |fj}, j = ±2, (41)

DS(2)
r (fk) = Pr(fk)⊕ span{λ−1λ1λ

r−2
x Ry |fk , λ−2λ2λ

r−2
y Rx |fk}, k = ±3. (42)
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From the cube, we extend the construction naturally in (36) for s = 1 to

φej,k;1 =
1

4
λxλ−1λ1(1 + sign(j)Ry)(1 + sign(k)Rz), (43)

φei,k;1 =
1

4
λyλ−2λ2(1 + sign(i)Rx)(1 + sign(k)Rz), (44)

φei,j;1 =
1

4
λzλ−3λ3(1 + sign(i)Rx)(1 + sign(j)Ry), (45)

which are zero on all the faces except for fj ∪ fk, fi ∪ fk, and fi ∪ fj , respectively, and

have the required property that their restrictions on each face fn lie in DS(2)
3 (fn) for all

n ∈ {±1,±2,±3}. We have used three supplements for each group in the construction
of (43)–(45), which are identified as

λxλ−1λ1{Ry, Rz, RyRz}, (46)

λyλ−2λ2{Rx, Rz, RxRz}, (47)

λzλ−3λ3{Rx, Ry, RxRy}. (48)

Unfortunately, (38) does not naturally generalize so that the restrictions φej,k;0|fn ,
φei,k;0|fn , and φei,j;0|fn belong to DS(2)

3 (fn) for all n ∈ {±1,±2,±3}. We require
functions ψx, ψy, and ψz with special properties. For ψx we require that

ψx|f−2∪f−3
= 0, λ−1λ1ψx|f2 ∈ DS

(2)(f2), λ−1λ1ψx|f3 ∈ DS
(2)(f3), ψx|e2,3 = 1.

Because the face direct serendipity spaces are well defined, knowing ψx on the edges
determines it on the faces f±2 and f±3 of the element. Similar properties need to hold
for ψy and ψz, especially that ψy|e1,3 = ψz|e1,2 = 1. To be precise, in terms of the
coefficients introduced in Lemma 2.2, these functions satisfy on the faces

ψx =


ψx,2 =

1

A2,3
−3,x

(
λ−3 − 1

2B
2,3
−3,x λx (1 +Rz)

)
, on f2,

ψx,3 =
1

A2,3
−2,x

(
λ−2 − 1

2B
2,3
−2,x λx (1 +Ry)

)
, on f3,

0, on f−2 ∪ f−3,

(49)

ψy =


ψy,1 =

1

A1,3
−3,y

(
λ−3 − 1

2B
1,3
−3,y λy (1 +Rz)

)
, on f1,

ψy,3 =
1

A1,3
−1,y

(
λ−1 − 1

2B
1,3
−1,y λy (1 +Rx)

)
, on f3,

0, on f−1 ∪ f−3,

(50)

ψz =


ψz,1 =

1

A1,2
−2,z

(
λ−2 − 1

2B
1,2
−2,z λz (1 +Ry)

)
, on f1,

ψz,2 =
1

A1,2
−1,z

(
λ−1 − 1

2B
1,2
−1,z λz (1 +Rx)

)
, on f2,

0, on f−1 ∪ f−2.

(51)

We have the interior left to be filled in. This will be discussed later in Section 7.
Continuing, we represent φe2,3;0, φe1,3;0, and φe1,2;0 as

φe2,3;0 = λ−1λ1ψx, φe1,3;0 = λ−2λ2ψy, φe1,2;0 = λ−3λ3ψz, (52)
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which equal λ−1λ1 on e2,3, λ−2λ2 on e1,3, and λ−3λ3 on e1,2, respectively. Moreover,
their restrictions on faces belong to the corresponding 2D serendipity spaces described
in (40)–(42), and they are zero on all the faces other than f2 ∪ f3, f1 ∪ f3, and f1 ∪ f2,
respectively. Since only one additional supplemental function for each group is allowed
to construct all the φej,k;0, φei,k;0 and φei,j;0, we take (52) as the additional supplements.
We get the supplemental space of dimension 12

SDS3 (E) =λ−1λ1λx span{Ry, Rz, RyRz} ⊕ λ−2λ2λy span{Rx, Rz, RxRz} (53)

⊕λ−3λ3λz span{Rx, Ry, RxRy} ⊕ span{φe1,2;0, φ
e
1,3;0, φ

e
2,3;0}.

4.4 Edge basis functions

We now describe how to construct edge basis functions for DS3(E) satisfying (31)–
(33). For simplicity, we consider first the group of 8 basis functions φei,j;s for i =
±1, j = ±2, s = 0, 1. The four functions φei,j;1 are given in (45). We also have the
supplemental function φe1,2;0 described in (52). For each group of 4 edges (that lie
between a pair of opposite faces), we need 3 more basis functions, which will each be
formed as a linear combination of φe1,2;0, φe±1,±2;1, and some polynomials in P3(E).

In fact, we need to take

φe−1,2;0 =
1

A−1,2
−2,z

[
λ−3λ3λ−2 −A1,2

−2,zφ
e
1,2;0 −B

1,2
−2,zφ

e
1,2;1 −B

−1,2
−2,zφ

e
−1,2;1

]
(54)

=
λ−3λ3

A−1,2
−2,z

[
λ−2 −A1,2

−2,zψz − 1
4B

1,2
−2,zλz(1 +Rx)(1 +Ry)

− 1
4B
−1,2
−2,zλz(1−Rx)(1 +Ry)

]
,

using (52) and (45). It is not difficult to verify that φe−1,2;0 ∈ DS3(E) has the properties
required in (33). It clearly vanishes on the faces f±3. Using (20), it also vanishes on
edges e±1,−2 and e1,2, and it has the value λ−3λ3 on edge e−1,2. But by construction,

φe−1,2;0 restricted to a face fn lies in DS(2)
3 (fn), which has only edge and vertex DoFs.

Thus we conclude that φe−1,2;0 vanishes on all the faces not containing edge e−1,2, i.e.,
on all the faces but f−1 and f2.

By a similar procedure, we also get the basis function of order s = 0 for e1,−2

φe1,−2;0 =
1

A1,−2
−1,z

(λ−3λ3λ−1 −A1,2
−1,zφ

e
1,2;0 −B

1,2
−1,zφ

e
1,2;1 −B

1,−2
−1,zφ

e
1,−2;1). (55)

We can obtain φe−1,−2;0 using a similar procedure, but it is simpler to realize that

φe−1,−2;0 = λ−3λ3 − φe1,2;0 − φe−1,2;0 − φe1,−2;0. (56)

For the 16 remaining edge basis functions, we have φej,k;1 and φei,k;1 from (43)–(44),
as well as φe2,3;0 and φe1,3;0 from (52), and we can construct

φe−2,3;0 =
1

A−2,3
−3,x

(λ−1λ1λ−3 −A2,3
−3,xφ

e
2,3;0 −B

2,3
−3,xφ

e
2,3;1 −B

−2,3
−3,xφ

e
−2,3;1), (57)

φe2,−3;0 =
1

A2,−3
−2,x

(λ−1λ1λ−2 −A2,3
−2,xφ

e
2,3;0 −B

2,3
−2,xφ

e
2,3;1 −B

2,−3
−2,xφ

e
2,−3;1), (58)

φe−1,3;0 =
1

A−1,3
−3,y

(λ−2λ2λ−3 −A1,3
−3,yφ

e
1,3;0 −B

1,3
−3,yφ

e
1,3;1 −B

−1,3
−3,yφ

e
−1,3;1), (59)
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φe1,−3;0 =
1

A1,−3
−1,y

(λ−2λ2λ−1 −A1,3
−1,yφ

e
1,3;0 −B

1,3
−1,yφ

e
1,3;1 −B

1,−3
−1,yφ

e
1,−3;1). (60)

Finally, we get φe−2,−3;0 and φe−1,−3;0 by

φe−2,−3;0 = λ−1λ1 − φe2,3;0 − φe−2,3;0 − φe2,−3;0, (61)

φe−1,−3;0 = λ−2λ2 − φe1,3;0 − φe−1,3;0 − φe1,−3;0. (62)

4.5 Remarks on the construction

The formulation of vertex and edge basis functions naturally gives the unisolvence of
the DoFs. Moreover, all the basis functions belong to the space P3(E)⊕ SDS3 (E), and
they are linearly independent. We conclude that (34) holds by a dimension counting
argument with SDS3 (E) defined in (53).

Note that our construction starts from asking φe1,2;0 to be λ−3λ3 on e1,2, and 0 on
f−1 and f−2, which loses symmetry. However, there is actually no difference on each
face, even if we start the construction from a different edge ei,j , i = ±1, j = ±2. This
is because all the φei,j;0 must satisfy the property that

φei,j;0


∈ λ−3λ3(P1(fi)⊕ {λzRy}), on fi,

∈ λ−3λ3(P1(fj)⊕ {λzRx}), on fj ,

= 1, on fi ∩ fj = ei,j ,

= 0, on fn, n 6= i, j.

(63)

Such a function is uniquely defined up to its values in the interior.

5 Finite element space and basis functions for r ≥ 3

We can now present the finite element space analogous to (53) when r ≥ 3. Among
all the supplements, 3(r− 3) of them are zero on all the edges, and we define them as

φfx,s = λ−2λ2λ−3λ3Rxλ
s
yλ

r−4−s
z , (64)

φfy,s = λ−1λ1λ−3λ3Ryλ
s
xλ

r−4−s
z , (65)

φfz,s = λ−1λ1λ−2λ2Rzλ
s
xλ

r−4−s
y , (66)

with s = 0, 1, . . . , r − 4. The remaining 12 supplements are defined as

φex,1 = λ−1λ1λ
r−2
x Ry, φey,1 = λ−2λ2λ

r−2
y Rx, φez,1 = λ−3λ3λ

r−2
z Rx, (67)

φex,2 = λ−1λ1λ
r−2
x Rz, φey,2 = λ−2λ2λ

r−2
y Rz, φez,2 = λ−3λ3λ

r−2
z Ry, (68)

φex,3 = λ−1λ1λ
r−2
x RyRz, φ

e
y,3 = λ−2λ2λ

r−2
y RxRz, φ

e
z,3 = λ−3λ3λ

r−2
z RxRy, (69)

φex,4 = λ−1λ1λ
r−3
x ψx, φey,4 = λ−2λ2λ

r−3
y ψy, φez,4 = λ−3λ3λ

r−3
z ψz, (70)

wherein the requirements of ψx, ψy, and ψz are given in (49)–(51). The finite element
space is given by DSr(E) = Pr(E)⊕ SDSr (E), where

SDSr (E) = span{φfx,s, φfy,s, φfz,s, φex,`, φey,`, φez,`| s = 0, 1, . . . , r − 4, ` = 1, 2, 3, 4}. (71)

Similar to the r = 3 case, φex,m, φey,m, and φez,m with m = 1, 2, 3 are used for
the construction of the highest degree edge basis functions, and φex,4, φey,4, and φez,4
are used for the construction of the second highest degree edge basis functions. The
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restriction of φex,4, φey,4, and φez,4 on each face fn belongs to DS(2)
r (fn) (see (40)–(42)).

Moreover,

φex,4|e2,3 = λ−1λ1λ
r−3
x , φey,4|e1,3 = λ−2λ2λ

r−3
y , φez,4|e1,2 = λ−3λ3λ

r−3
z (72)

are zero on the faces that do not contain e2,3, e1,3, and e1,2 as an edge, respectively.
In the rest of this section, we construct basis functions with respect to DoFs on each

geometry object (i.e., vertex, edge, face, interior element) and conclude unisolvence of
the DoFs.

5.1 Vertex and interior basis functions requiring no
supplements

We take vertex basis functions φvi,j,k, where i = ±1, j = ±2, and k = ±3, the same
as given in (39), since these are 1 at vi,j,k, and 0 at all the other vertices. For r ≥ 6,
define interior element basis functions as φEs1,s2,s3 with 0 ≤ s1 + s2 + s3 ≤ r − 6 by

φEs1,s2,s3 =
( 3∏
n=−3

λn

)
λs1x λ

s2
y λ

s3
z . (73)

Such functions are zero on ∂E.
Lemma 5.1. For any linear combination

φ =
∑

0≤s1+s2+s3≤r−6

cEs1,s2,s3φ
E
s1,s2,s3 , (74)

if the interior DoFs defined in (29) vanish, then φ = 0.

Proof. In (29), let

q =
∑

0≤s1+s2+s3≤r−6

cEs1,s2,s3λ
s1
x λ

s2
y λ

s3
z ∈ Pr−6. (75)

Then

0 =

∫
E

φ
( ∑

0≤s1+s2+s3≤r−6

cEs1,s2,s3λ
s1
x λ

s2
y λ

s3
z

)
(76)

=

∫
E

( 3∏
n=−3

λn

)( ∑
0≤s1+s2+s3≤r−6

cEs1,s2,s3λ
s1
x λ

s2
y λ

s3
z

)2

implies that all the coefficients cEs1,s2,s3 vanish by the non-negativity of the integrand
and Lemma 2.1.

5.2 Face basis functions

We next construct basis functions associated to the face DoFs (28). As an example,

we want φf1;s1,s2
for face f1 when r ≥ 4, where s1 + s2 ≤ r − 4, and, on the faces,

φf1;s1,s2
=

{
λ−2λ2λ−3λ3λ

s1
y λ

s2
z , on f1,

0, on fn, n 6= 1.
(77)
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We start the construction from the highest order. For s1 + s2 = r − 4, we directly
have from the supplement φfx,s1 in (64) that

φf1;s1,s2
=

1

2
(φfx,s1 + λ−2λ2λ−3λ3λ

s1
y λ

s2
z ) (78)

=
1

2
λ−2λ2λ−3λ3(1 +Rx)λs1y λ

s2
z ∈ DSr(E).

We obtain the basis functions for lower order by induction. For any 0 ≤ s0 ≤ r− 5, if
we already have φf1;s′1,s

′
2

for s′1 + s′2 > s0, then we construct φf1;s1,s2
with s1 + s2 = s0,

from

ϕf1;s1,s2
= λ−1λ−2λ2λ−3λ3λ

s1
y λ

s2
z ∈ Pr(E). (79)

It is zero on all the faces except f1, where, using Lemma 2.3,

ϕf1;s1,s2
|f1 = λ−2λ2λ−3λ3λ

s1
y λ

s2
z

(
A1
−1,yz +B1

−1,yzλy + C1
−1,yzλz

)∣∣
f1
. (80)

By canceling the higher order terms in ϕf1;s1,s2
, we obtain the basis function

φf1;s1,s2
=

1

A1
−1,yz

(
ϕf1;s1,s2

−B1
−1,yzφ

f
1;s1+1,s2

− C1
−1,yzφ

f
1;s1,s2+1

)
. (81)

Note that although higher order terms are canceled here, it is not a necessary
procedure, which means ϕf1;s1,s2

are also able to serve as basis functions.

A similar construction gives φfn,s1,s2 for n = −1,±2,±3 and 0 ≤ s1 + s2 ≤ r − 4.
We obtain 3(r − 2)(r − 3) = 6 dimPr−4(f) functions.
Lemma 5.2. On any face fn, suppose φ|fn can be represented as

φ|fn =
∑

0≤s1+s2≤r−4

cfn;s1,s2φ
f
n;s1,s2 . (82)

If the face DoFs for fn defined in (28) vanish for φ, then φ|fn = 0.

Proof. If the face DoFs (28) vanish for f1, for example, in (28), let

q =
∑

0≤s1+s2≤r−4

cf1;s1,s2
λs1y λ

s2
z . (83)

Then (77) implies that the integrand is always non-negative on f1 and the second

part of Lemma 2.1 implies that all the coefficients cf1;s1,s2
vanish. By symmetry, we

conclude that cfn;s1,s2 = 0 for all −3 ≤ n ≤ 3 and 0 ≤ s1 + s2 ≤ r − 4.

5.3 Edge basis functions

For illustration purpose, we construct φei,j;s for i = ±1, j = ±2, and s = 0, 1, 2, . . . , r−
2, such that on edges and faces,

φei,j;s =

{
λ−3λ3λ

s
z, on ei,j .

0, on fn, n 6= i, j.
(84)

We start from the highest order s = r − 2, where

φei,j;r−2 =
1

4
λ−3λ3λ

r−2
z (1 + sign(i)Rx)(1 + sign(j)Ry) ∈ DSr(E), (85)

13



using the supplements φez,1, φez,2, and φez,3 in (67)–(69).
For s = r − 3, the construction follows the idea of constructing φei,j;0 for DS3(E)

in Section 4.4, except for that they are multiplied through by λr−3
z . First of all, we

directly have φe1,2;r−3 = φez,4 from (70). By the same procedure of finding proper linear
combinations, using Lemma 2.2, we derive the basis functions

φe−1,2;r−3 =
1

A−1,2
−2,z

(
λ−3λ3λ

r−3
z λ−2 −A1,2

−2,zφ
e
z,4 −B

1,2
−2,zφ

e
1,2;r−2 −B

−1,2
−2,zφ

e
−1,2;r−2

)
,

φe1,−2;r−3 =
1

A1,−2
−1,z

(
λ−3λ3λ

r−3
z λ−1 −A1,2

−1,zφ
e
z,4 −B

1,2
−1,zφ

e
1,2;r−2 −B

1,−2
−1,zφ

e
1,−2;r−2

)
.

Finally, we directly obtain the basis function of order s = r − 3 for e−1,−2 by

φe−1,−2;r−3 = λ−3λ3λ
r−3
z − φe1,2;r−3 − φe−1,2;r−3 − φe1,−2;r−3. (86)

These functions are uniquely defined up to their values in the interior, no matter from
which edge we start the construction.

We continue to construct basis functions for smaller s by induction. If we already
have φei,j;s for s > s0, where 0 ≤ s0 ≤ r − 4, then we first construct

ϕei,j;s0 = λ−3λ3λ−iλ−jλ
s0
z ∈ Pr(E). (87)

Note that

ϕei,j;s0 =

{
λ−3λ3λ

s0
z (Ai,j−i,z +Bi,j−i,zλz)(A

i,j
−j,z +Bi,j−j,zλz), on ei,j ,

0, on fn, n 6= i, j.
(88)

Then we subtract higher order terms from it and get

φei,j;s0 =
1

Ai,j−i,zA
i,j
−j,z

[
ϕei,j;s0 (89)

− (Ai,j−i,zB
i,j
−j,z +Ai,j−j,zB

i,j
−i,z)φ

e
i,j;s0+1 −B

i,j
−i,zB

i,j
−j,zφ

e
i,j;s0+2

]
.

If we want to simplify the construction, we can directly use ϕei,j;s0 as the basis function
of order s0 on ei,j for s0 ≤ r − 4. The basis construction for e±1,±2 can be easily
generalized to e±1,±3 and e±2,±3 by symmetry. We have constructed 12(r − 1) =
12 dimPr−2(e) functions.
Lemma 5.3. On any edge em,n, suppose φ|em,n could be represented as

φ|em,n =

r−2∑
s=0

cem,n;sφ
e
m,n;s. (90)

If the edge DoFs for em,n defined in (27) vanish for φ, then φ|em,n
= 0.

Proof. We prove the argument for m = ±1 and n = ±2 as an example. If the edge
DoFs (27) vanish, let

q =

r−2∑
s=0

cem,n;sλ
s
z. (91)

Since the integral is zero and the integrand is always non-negative on em,n by (84),
we conclude cem,n;s = 0 for all s = 0, 1, . . . , r − 2 by the first part of Lemma 2.1.
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5.4 Unisolvence of the degrees of freedom

Lemma 2.1 gives certain polynomial bases for each geometry object (i.e., vertices,
edges, faces, and interior element). We state and prove the unisolvence of DoFs in the
following theorem.
Theorem 5.1. The finite element DSr(E) = Pr(E)⊕SDSr (E) with the basis functions
of SDSr (E) defined by (64)–(70) is well-defined (i.e., unisolvent) with DoFs (26)–(29).

Proof. Write φ ∈ DSr(E) as

φ =
∑

i=±1,j=±2,k=±3

cvi,j,kφ
v
i,j,k

+

r−2∑
s=0

( ∑
j=±2,k=±3

cej,k;sφ
e
j,k;s +

∑
i=±1,k=±3

cei,k;sφ
e
i,k;s +

∑
i=±1,j=±2

cei,j;sφ
e
i,j;s

)
(92)

+
∑

0≤s1+s2≤r−4

3∑
n=−3

cfn;s1,s2φ
f
n;s1,s2 +

∑
0≤s1+s2+s3≤r−6

cEs1,s2,s3φ
E
s1,s2,s3 .

Restricted to any vertex vi,j,k, only φvi,j,k is nonzero among all the basis functions.
Therefore, if vertex DoFs (26) vanish for φ, we must have cvi,j,k = 0 for all i = ±1, j =
±2, k = ±3. Since cvi,j,k = 0, and all the face and interior element basis functions are
zero on edges, we have

φ|ej,k =

r−2∑
s=0

cej,k;sφ
e
j,k;s, φ|ei,k =

r−2∑
s=0

cei,k;sφ
e
i,k;s, φ|ei,j =

r−2∑
s=0

cei,j;sφ
e
i,j;s, (93)

for any edge ej,k, ei,k, and ei,j . By Lemma 5.3, cej,k;s = cei,k;s = cei,j;s = 0 for all the
edges and s = 0, 1, . . . , r − 2. Similarly, since all the vertex and edge coefficients are
zero, and interior element basis functions vanish on faces, we have

φ|fn =
∑

0≤s1+s2≤r−4

cfn;s1,s2φ
f
n;s1,s2 (94)

for all the faces fn. By Lemma 5.2, cfn;s1,s2 = 0 for all the faces fn and 0 ≤ s1 + s2 ≤
r − 4. Since all the other coefficients vanish, we have φ consisting only of interior
element basis functions. By Lemma 5.1, we finally conclude that all the coefficients
vanish.

6 Direct serendipity finite elements for r ≤ 2

We construct direct serendipity finite elements DSr(E) for r = 1, 2 as a subspace of
DS3(E), which has been constructed explicitly in Section 4. The DoFs can be chosen
either as defined in (26)–(27) or nodal DoFs.

For i = ±1, j = ±2, and k = ±3, define φv,low
i,j,k ∈ DS3(E) for each vertex vi,j,k,

such that it is linear on each edge, and is one at vi,j,k while zero on all other vertices.
These functions are uniquely defined in DS3(E), since there are no face or interior
DoFs for r = 3. Furthermore, denote the edge basis functions φej,k;0, φei,k;0, and φei,j;0
defined for DS3(E) as φe,low

j,k , φe,low
i,k , and φe,low

i,j , respectively. Define

DS1(E) = span{φv,low
i,j,k | i = ±1, j = ±2, k = ±3}, (95)

DS2(E) = DS1(E)⊕ span{φe,low
j,k , φe,low

i,k , φe,low
i,j | i = ±1, j = ±2, k = ±3}. (96)
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Theorem 6.1. For r = 1, 2, the lower order spaces DSr(E) defined as (95)–(96)
satisfy that Pr(E) ⊂ DSr(E).

Proof. For any p ∈ Pr(E), there is a unique function φ ∈ DSr(E) having the same
evaluation of DoFs as p. Moreover, restricted to any edge em,n, φ|em,n has to be a
polynomial of order r by construction (95)–(96). Any function in DS3(E) is uniquely
defined by its shape on edges and vertices. Since we both have p ∈ DS3(E) and
φ ∈ DS3(E) with the same values restricted to edges and vertices, we must have
p = φ.

7 Construction of the special functions R∗ and ψ∗

We present two ways of filling in the interior of the needed special functions. Recall
that the boundary values required of Rx, Ry, and Rz are specified in (7), and those of
ψx, ψy, and ψz are found in (49)–(51). The first way results in smooth supplemental
functions, while the second way constructs supplements that are piecewise polynomials
in H1(E).

7.1 Smooth supplemental functions

The first construction makes use of the mapping x = FE(x̂) from a reference element
Ê introduced in Section 2. With x̂ = F−1

E (x) = (x̂, ŷ, ẑ), we define ψx, ψy, and ψz on
the element E by

ψx(x) = ψ̂x(x̂) = ψ̂x(x̂, ŷ, ẑ) = ψx,2(FE(x̂, 1, ẑ))ψx,3(FE(x̂, ŷ, 1)), (97)

ψy(x) = ψ̂y(x̂) = ψ̂y(x̂, ŷ, ẑ) = ψy,1(FE(1, ŷ, ẑ))ψy,3(FE(x̂, ŷ, 1)), (98)

ψz(x) = ψ̂z(x̂) = ψ̂z(x̂, ŷ, ẑ) = ψz,1(FE(1, ŷ, ẑ))ψz,2(FE(x̂, 1, ẑ)), (99)

where ψx,2, . . . , ψz,2 are defined in (49)–(51). It is not difficult to verify that these
functions have the required properties. Moreover, they are smooth if Rx|f2 , Rx|f3 ,
Ry|f1 , Ry|f3 , Rz|f1 and Rz|f2 are smooth. For example, Rx, Ry, and Rz could be taken
as in (8).

7.2 H1 supplemental functions

The second construction makes use of partitions of the hexahedron into tetrahedra, of
which two partitions are discussed.

v1,−2,−3

v1,2,−3

v1,2,3v1,−2,3

v−1,−2,−3
v−1,2,−3

v−1,−2,3

v−1,2,3

Fig. 2 The partition of marching tetrahedra TM
E , where TM

2,−1 is painted in gray.

We first consider a partition based on marching tetrahedra, as discussed in [23],
where the element E is divided into six tetrahedra as shown in Fig. 2. An interior
diagonal mesh line joining vertex v−1,−2,−3 to v1,2,3 is added, as well as six mesh
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lines on the faces joining v±1,−2,−3 to v±1,2,3, v−1,±2,−3 to v1,±2,3, and v−1,−2,±3 to
v1,2,±3. Denote this sub-partition as T ME and the tetrahedron which has two faces
lying in fm and fn as TMm,n. We remark that this partition naturally matches adjacent
hexahedra in a logically rectangular mesh.

Let the piecewise continuous polynomial spaces corresponding to the partition be
denoted

Ps(T ME ) =
{
f ∈ C0(E) : f |TM

m,n
∈ Ps(TMm,n) ∀m,n

}
. (100)

Define Rx, Ry, and Rz in P1(T ME ) according to (7) by fixing each vertex value to be
either −1 or 1.

Since the functions R∗ are piecewise linear, the functions ψx, ψy, and ψz satisfying
(49)–(51) must be piecewise continuous quadratic functions. They can be defined in
P2(T ME ) by interpolation at the vertices and mesh line midpoints of the sub-partition.
However, each of these functions is fixed only on four of the faces of E, and so no
values are given at the midpoints of three sub-partition mesh lines (two lying on faces,
one being the interior diagonal line). We need to fix these values to define ψx, ψy, and
ψz, and any value will suffice (such as taking the average of the ends at the midpoint).
By such a construction, all the supplemental functions will be piecewise polynomials
that are continuous on E, so they will lie in H1(E).

v1,−2,−3 v1,2,−3

v1,2,3v1,−2,3

v−1,−2,−3
v−1,2,−3

v−1,−2,3

v−1,2,3

v1,−2,−3 v1,2,−3

v1,2,3v1,−2,3

v−1,−2,−3
v−1,2,−3

v−1,−2,3

v−1,2,3

Fig. 3 The diamond cubic based partition T D
E (left) and T D′

E (right). Displayed in gray for both
partitions is the tetrahedron with all four faces internal to E.

The second partition is based on the diamond lattice cells, which divides the hexa-
hedron E into five tetrahedra with exactly one having all its faces in the interior of E.
The partition uses six additional mesh lines that all lie in ∂E. As shown in Figure 3,
there are two patterns for this partition. First, one can take the “even” set of ver-
tices v1,2,3, v−1,−2,3, v−1,2,−3, and v1,−2,−3, and the six mesh lines joining each pair.
Denote this pattern as T DE . Second, one can take the “odd” set of vertices v−1,−2,−3,
v−1,2,3, v1,−2,3, and v1,2,−3, and the six mesh lines joining each pair, to obtain the pat-

tern denoted as T D′E . We remark that these patterns appear alternately for adjacent
hexahedra in a logically rectangular mesh.

Similar to the case for the marching tetrahedra, the special functions Rx, Ry, and

Rz can be interpolated into P1(T DE ) or P1(T D′E ). Moreover, ψx, ψy, and ψz, can be

interpolated into P2(T DE ) or P2(T D′E ). We will need to fix arbitrarily the midpoint
values of the two mesh lines of the sub-partition not fixed by the required function
values.

8 Defining an H1-conforming space on the domain

Direct serendipity elements in 2D are not uniquely defined, as discussed in [16]. The
traces of our 3D elements on the faces are affected by our choice of the functions Rx,
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Ry, and Rz and the functions λx, λy, and λz. When merging two elements together,
these choices must be respected by the adjoining elements.

Consider two adjacent elements E1 and E−1 joined on the face f = E1 ∩E−1. For
simplicity of the discussion, we assume that in the notation of this paper, E1 considers
f as being its f1, and E−1 considers f as being its f−1. Moreover, we denote the
special functions on f restricted to E±1 as being Ry,±1, Rz,±1, λy,±1, and λz,±1.

We must ask two things. First, we require that,

Rα,1|f = ±Rα,−1|f , α = y, z. (101)

We are dealing with vector spaces, so technically the two expressions need only be mul-
tiples of each other, but they are ±1 on opposite edges. The constructions in Section 7
have this property. For the smooth case, the functions R∗ are defined in (8) by the tri-
linear mapping of the reference cube to E±1. The trilinear map restricts to a bilinear
map on each face, determined only by its four vertices. Therefore the value of Rα,±1|f
must agree with the value of α̂, α = y, z, up to its sign. For the H1 supplemental
function case, we merely ask that the partition of neighboring elements coincide when
restricted to the common face. In the case of a logically rectangular mesh, this is sat-
isfied naturally by marching tetrahedra. However, if we use the partition based on
diamond lattice cells, two neighboring elements that share a common face must use
different patterns T DE and T D′E to match.

Second, we must ask that the special linear functions agree up to a multiple. That
is, the zero line of λα,±1|f is denoted Pα,±1 ∩ f , and we require that

Pα,1 ∩ f = Pα,−1 ∩ f, α = y, z. (102)

This requirement is more delicate to enforce on a general mesh. To illustrate a very
special case, suppose that our mesh is composed only of elements that have consistent
mid planes, meaning that the midpoints of the four edges e±1,±2 form a plane, and
similarly for e±1,±3 and e±2,±3. We could then simply take these three planes as the
zero planes of our three special linear functions. But the consistent mid plane condition
is a severe restriction on the mesh.

We can resolve the issue if we restrict to the most natural situation of a logically
rectangular mesh. In that case, a simple choice is to take

λx = λ−1, λy = λ−2, λz = λ−3. (103)

The zero lines on the faces then agree between pairs of elements, so the condition
(102) is satisfied.

9 Approximation results

We give a summary of the necessary constructions and the main approximation results
without complete proofs, since the development closely follows that for direct serendip-
ity finite elements on quadrilaterals discussed in [16]. A minor issue is that [16] assumes
extra smoothness of the special functions analogous to those in (7), but this extra
smoothness requirement was removed in [24, 25], allowing only piecewise continuous,
differentiable functions. The uniform shape regularity of the mesh Th on the domain
Ω is assumed for the purpose of proving global approximation properties, with its
definition generalized from [26, pp. 104–105].
Definition 9.1. For any E ∈ Th, denote by Ti,j,k, i = ±1, j = ±2, k = ±3, the
sub-tetrahedron of E with vertices vi,j,k, v−i,j,k,vi,−j,k, and vi,j,−k of E. Define the
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parameters

hE = diameter of E, (104)

ρE = min
i,j,k
{diameter of the largest sphere inscribed in Ti,j,k}. (105)

A collection of meshes {Th}h>0 is uniformly shape regular if there exists a shape
regularity parameter σ∗ > 0, independent of Th and h > 0, such that the ratio

ρE
hE
≥ σ∗ > 0 for all E ∈ Th. (106)

We construct an interpolation operator that maps onto DSr inspired by Scott
and Zhang [27]. For the purpose of the proof, denote the global nodal points as
{a1, . . . , aNr

} with Nr = dimDSr. For each nodal point ai, denote its corresponding
global nodal basis function as ϕi. We require that the nodal points on an element
depend continuously on its vertices. If ai lies in the interior cell of an element E ∈ Th,
we set Ki to be (the closed set) E. These are referred to as interior nodes. If ai lies
in the interior of face f of Th (i.e., not on the edges or at the vertices), we set Ki = f
(a closed set), and ai is referred to as a face node. If ai belongs to the interior of an
edge or is a vertex of Th, Ki is chosen to be any fixed face f containing ai, with the
additional requirement that if ai ∈ ∂Ω, then f ⊂ ∂Ω. Those nodes are said to be edge
and vertex nodes, respectively. Note that for such nodes, we are free to chose f from
among multiple faces.

An L2-dual nodal basis, denoted as {ψ1, . . . , ψNr
}, is defined as follows. Firstly, let

ni be the total number of nodes in Ki. Secondly, denote the nodes in Ki as {ai,j : j =
1, . . . , ni} with ai,1 = ai, corresponding to the global nodal basis functions Si = {ϕi,j :
j = 1, . . . , ni}. Thirdly, define an L2(Ki)-dual nodal basis {ψi,j : j = 1, . . . , ni} ⊂
spanSi satisfying ∫

Ki

ψi,j(x)ϕi,k(x) dx = δjk, j, k = 1, 2, . . . , ni, (107)

where we use a slight abuse of notation in that dx should be dσ(x) when Ki is a face.
Finally, for the node ai, its corresponding L2-dual nodal basis function is taken to be
ψi = ψi,1. For each node ai giving rise to Ki and ψi, we can prove that∫

Ki

ψi(x)ϕj(x) dx = δij , i, j = 1, 2, . . . , Nr. (108)

We define an interpolation operator Irh : W l
p(Ω)→ DSr by

Irh v(x) =

Nr∑
i=1

ϕi(x)

∫
Ki

ψi(y) v(y) dy ∈ DSr, (109)

where 1 ≤ p ≤ ∞ and l > 1/p (but l ≥ 1 if p = 1). Note that for any v ∈ W l
p(Ω),

the nodal values

∫
Ki

ψi(y) v(y) dy are well defined according to the trace theorem.

With a proof analogous to [16] and [24, 25], we can derive the following lemma by a
continuity and compactness argument.
Lemma 9.1. Let v ∈ W l

p(Ω), where 1 ≤ p ≤ ∞ and ` > 1/p (or ` ≥ 1 if p = 1).
Let Th be uniformly shape regular (Definition 9.1) with shape regularity parameter σ∗.
For every E ∈ Th, suppose that DSr(E) are constructed with λx, λy, and λz such that
the intersection of their zero set depends on the vertices of E continuously. Moreover,
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assume that Rx, Ry, Rz, ψx, ψy, and ψz are piecewise uniformly differentiable H1(E)
functions of the vertices of E up to order m. Then for r ≥ 1, E ∈ Th, 1 ≤ q ≤ ∞,
and any nonnegative integer m,

||Irh v||Wm
q (E) ≤ C(σ∗,m, q)

∑̀
k=0

h
k−m+ 3

q−
3
p

E |v|Wk
p (E∗), (110)

where E∗ =
⋃
F∈Th, F∩E 6=∅ F and | · |Wk

p
is the seminorm of k-th order derivatives.

Combining Lemma 9.1 and the Bramble-Hilbert lemma [28] in the form developed
by Dupont and Scott in [29] leads to the following error estimation results.
Theorem 9.1. With the assumptions of Lemma 9.1, there exists a constant C =
C(r, σ∗) > 0 such that for all functions v ∈W `

p(E∗), with 1 ≤ p ≤ ∞ and ` > 1/p (or
` ≥ 1 if p = 1),

||v − Irh v||Wm
p (E) ≤ C h`−mE |v|W `

p(E∗), 0 ≤ m ≤ min(`, r + 1). (111)

Moreover, there exists a constant C = C(r, σ∗) > 0, independent of h = maxE∈Th hE,
such that for all functions v ∈W `

p(Ω),

( ∑
E∈Th

||v − Irh v||
p
Wm

p (E)

)1/p

≤ C h`−m |v|W `
p(Ω), 0 ≤ m ≤ min(`, r + 1). (112)

10 Some numerical tests

We test the new finite elements using Poisson’s equation

−∇ · (∇p) = f in Ω, (113)

p = 0 on ∂Ω, (114)

where f ∈ L2(Ω). The problem can be written in the weak form: Find p ∈ H1
0 (Ω) such

that

(∇p,∇q) = (f, q), ∀q ∈ H1
0 (Ω), (115)

where (·, ·) is the L2(Ω) inner product. In view of Theorem 9.1, it is well known that
the following theorem holds [30].
Theorem 10.1. Let Th be uniformly shape regular with shape regularity parameter σ∗
and let the assumption in Theorem 9.1 hold. There exists a constant C > 0, depending
on r and σ∗ but otherwise independent of Th and h > 0, such that

‖p− ph‖Hm(Ω) ≤ C hs+1−m |p|Hs+1(Ω), s = 0, 1, . . . , r, m = 0, 1, (116)

where ph ∈ DSr(Ω) ∩H1
0 (Ω) approximates the solution p of (115) for r ≥ 1.

We consider the test problem (113)–(114) on the cubical domain Ω = [0, 1]3. The
analytical solution of the test problem is p(x1, x2, x3) = sin(πx1) sin(πx2) sin(πx3),
with the source term f(x1, x2, x3) = 3π2 sin(πx1) sin(πx2) sin(πx3).

The numerical solutions are computed on two sequences of n × n × n meshes,
with n = 4, 8, 12, 16. Denote the global vertices as vglobal

i,j,k = (xglobal
1;i,j,k, x

global
2;i,j,k, x

global
3;i,j,k)

for 0 ≤ i, j, k ≤ n. The first set of meshes, T 1
h , is generated by deviating the interior

vertices of a cubical mesh regularly such that there are two pairs of non-parallel faces
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in each element, with the vertices defined by

xglobal
1;i,j,k =


1
n (i+ 0.1), if i%2 = j%2 and 0 < i < n,
1
n (i− 0.1), if i%2 6= j%2 and 0 < i < n,

i
n , if i = 0, n,

(117)

xglobal
2;i,j,k = jh, (118)

xglobal
3;i,j,k =


1
n (k + 0.1), if k%2 = j%2 and 0 < k < n,
1
n (k − 0.1), if k%2 6= j%2 and 0 < k < n,

k
n , if k = 0, n.

(119)

We show the T 1
h mesh for n = 4 as an example in Fig. 4.

Fig. 4 Plots of the T 1
h mesh for n = 4 with a general view, a top view, and a front view.

The second set of meshes, T 2
h , are generated randomly by first deviating the vertices

on the lower boundaries {x1 = 0} ∪ {x2 = 0} ∪ {x3 = 0}. For the distortion factor d
and random numbers r1;i,j,k, r2;i,j,k, r3;i,j,k generated from uniform distribution [−1, 1],
define

xglobal
1;i,j,k =

{
1
n (i+ d r1;i,j,k), if j = 0 or k = 0, and 0 < i < n,

i
n , if j = 0 or k = 0, and i = 0, n,

(120)

xglobal
2;i,j,k =

{
1
n (j + d r2;i,j,k), if i = 0 or k = 0, and 0 < j < n,

j
n , if i = 0 or k = 0, and j = 0, n,

(121)

xglobal
3;i,j,k =

{
1
n (k + d r3;i,j,k), if i = 0 or j = 0, and 0 < k < n,

k
n , if i = 0 or j = 0, and k = 0, n.

(122)

For each hexahedral element, since all the faces are required to be flat, seven vertices
are enough to decide the location of the eighth. Therefore, all the other vertices such
that i, j, k > 0 are consequently decided by the order of ascending indices. However, by
this definition, the irregularity of the element will increase for larger indices. For the
same distortion factor d, the σ∗ in Definition 9.1 can decrease for larger n. Therefore,
we pick d = 0.075, 0.063, 0.055, 0.056 for n = 4, 8, 12, 16, respectively, such that σ∗ is
approximately 0.1 to three decimal precision. A plot of T 2

h mesh with n = 4 is shown
in Fig. 5 as an example.

We present the convergence results for DSr with r = 1, 2, 3, 4 on the meshes with
n = 4, 8, 12, 16. The results are compared for three different definitions of supplemen-
tal functions. Denote the direct serendipity space with the smooth supplements, the
piecewise polynomial supplements based on marching tetrahedra, and those based on
diamond lattice cells as DSS

r , DSM
r and DSD

r , respectively.
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Fig. 5 A plot of the T 2
h mesh for n = 4 with a general view.

10.1 Shape regular meshes T 1
h

The errors and the corresponding convergence rates of DSS
r on T 1

h are presented in
Table 2. The convergence rates are approximately r + 1 for L2-norm error, and r for
H1-seminorm error, which agree with Theorem 10.1. The errors and the convergence
rates for DSM

r and DSD
r are shown in Table 3 and Table 4. We note that the errors

for DSM
r and DSD

r are slightly worse than those of DSS
r for higher r. We suppose that

this is because smooth supplements behave better in approximating smooth functions.

Table 2 Errors and convergence rates for DSSr on T 1
h .

r = 1 r = 2 r = 3 r = 4
n error rate error rate error rate error rate

L2 errors and convergence rates

4 7.688e-02 — 5.453e-03 — 1.445e-03 — 1.882e-04 —
8 1.878e-02 2.03 6.935e-04 2.98 9.020e-05 4.00 5.843e-06 5.01
12 8.333e-03 2.00 2.065e-04 2.98 1.773e-05 4.01 7.698e-07 4.99
16 4.688e-03 2.00 8.730e-05 3.00 5.590e-06 4.02 1.830e-07 5.00

H1-seminorm errors and convergence rates

4 2.438e-01 — 2.778e-02 — 9.693e-03 — 1.362e-03 —
8 1.204e-01 1.02 6.739e-03 2.04 1.187e-03 3.03 8.555e-05 3.99
12 8.022e-02 1.00 2.985e-03 2.01 3.500e-04 3.01 1.693e-05 3.99
16 6.019e-02 1.00 1.678e-03 2.00 1.473e-04 3.01 5.372e-06 4.00

Table 3 Errors and convergence rates for DSMr on T 1
h .

r = 1 r = 2 r = 3 r = 4
n error rate error rate error rate error rate

L2 errors and convergence rates

4 7.682e-02 — 7.032e-03 — 5.219e-03 — 5.912e-04 —
8 1.879e-02 2.03 7.089e-04 3.31 2.410e-04 4.44 1.603e-05 5.20
12 8.339e-03 2.00 2.069e-04 3.03 4.433e-05 4.17 1.999e-06 5.13
16 4.691e-03 2.00 8.702e-05 3.01 1.362e-05 4.11 4.628e-07 5.09

H1-seminorm errors and convergence rates

4 2.437e-01 — 3.922e-02 — 3.070e-02 — 4.121e-03 —
8 1.204e-01 1.02 7.322e-03 2.42 3.436e-03 3.16 2.478e-04 4.06
12 8.023e-02 1.00 3.082e-03 2.13 9.825e-04 3.08 4.747e-05 4.07
16 6.020e-02 1.00 1.703e-03 2.06 4.080e-04 3.06 1.480e-05 4.06

10.2 Randomly generated meshes T 2
h

We show the errors and convergence rates for DSS
r , DSM

r , and DSD
r on T 2

h in Table 5–
7. The results are similar to those of T 1

h . For all the direct serendipity spaces, we
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Table 4 Errors and convergence rates for DSDr on T 1
h .

r = 1 r = 2 r = 3 r = 4
n error rate error rate error rate error rate

L2 errors and convergence rates

4 7.691e-02 — 6.158e-03 — 3.747e-03 — 4.831e-04 —
8 1.873e-02 2.04 7.081e-04 3.12 2.281e-04 4.04 1.612e-05 4.91
12 8.302e-03 2.00 1.988e-04 3.13 4.498e-05 4.00 2.128e-06 4.99
16 4.669e-03 2.00 8.210e-05 3.08 1.421e-05 4.01 5.036e-07 5.02

H1-seminorm errors and convergence rates

4 2.440e-01 — 3.407e-02 — 2.589e-02 — 3.598e-03 —
8 1.202e-01 1.02 7.111e-03 2.26 3.197e-03 3.02 2.417e-04 3.90
12 8.010e-02 1.00 2.955e-03 2.16 9.419e-04 3.01 4.794e-05 3.99
16 6.009e-02 1.00 1.621e-03 2.09 3.963e-04 3.01 1.517e-05 4.01

observe optimal convergence rates, with the errors for DSS
r being smaller than DSM

r

and DSD
r for larger r.

Table 5 Errors and convergence rates for DSSr on T 2
h .

r = 1 r = 2 r = 3 r = 4
n error rate error rate error rate error rate

L2 errors and convergence rates

4 7.508e-02 — 5.109e-03 — 1.317e-03 — 1.770e-04 —
8 1.797e-02 2.21 6.252e-04 3.24 7.446e-05 4.43 5.327e-06 5.40
12 7.626e-03 2.12 1.885e-04 2.96 1.342e-05 4.24 6.956e-07 5.03
16 4.349e-03 2.30 8.192e-05 3.41 4.406e-06 4.56 1.720e-07 5.73

H1-seminorm errors and convergence rates

4 2.410e-01 — 2.571e-02 — 9.244e-03 — 1.263e-03 —
8 1.181e-01 1.10 6.006e-03 2.24 1.092e-03 3.29 7.755e-05 4.30
12 7.697e-02 1.06 2.677e-03 2.00 3.031e-04 3.17 1.533e-05 4.01
16 5.788e-02 1.17 1.527e-03 2.30 1.307e-04 3.45 5.002e-06 4.59

Table 6 Errors and convergence rates for DSMr on T 2
h .

r = 1 r = 2 r = 3 r = 4
n error rate error rate error rate error rate

L2 errors and convergence rates

4 7.510e-02 — 6.793e-03 — 5.130e-03 — 5.733e-04 —
8 1.797e-02 2.21 6.439e-04 3.63 2.240e-04 4.83 1.490e-05 5.63
12 7.627e-03 2.12 1.903e-04 3.01 4.116e-05 4.19 1.877e-06 5.12
16 4.349e-03 2.30 8.225e-05 3.44 1.283e-05 4.78 4.434e-07 5.91

H1-seminorm errors and convergence rates

4 2.410e-01 — 3.767e-02 — 3.036e-02 — 4.027e-03 —
8 1.181e-01 1.10 6.627e-03 2.68 3.296e-03 3.42 2.350e-04 4.38
12 7.697e-02 1.06 2.792e-03 2.14 9.435e-04 3.09 4.534e-05 4.07
16 5.788e-02 1.17 1.562e-03 2.38 3.948e-04 3.57 1.434e-05 4.72

11 Conclusions

We constructed direct serendipity finite elements on a general non-degenerate cuboidal
hexahedron E, which is a three-dimensional polytope with all the faces being flat, and
that can be obtained by some trilinear map of a cube. For approximation purposes,
DSr(E) takes the form

DSr(E) = Pr(E)⊕ SDSr (E), r ≥ 1, (123)
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Table 7 Errors and convergence rates for DSDr on T 2
h .

r = 1 r = 2 r = 3 r = 4
n error rate error rate error rate error rate

L2 errors and convergence rates

4 7.509e-02 — 6.434e-03 — 3.634e-03 — 4.786e-04 —
8 1.797e-02 2.21 6.427e-04 3.55 2.242e-04 4.30 1.565e-05 5.28
12 7.626e-03 2.12 1.813e-04 3.13 4.441e-05 4.00 2.076e-06 4.99
16 4.349e-03 2.30 7.660e-05 3.53 1.433e-05 4.63 5.008e-07 5.83

H1-seminorm errors and convergence rates

4 2.410e-01 — 3.517e-02 — 2.527e-02 — 3.516e-03 —
8 1.181e-01 1.10 6.436e-03 2.62 3.127e-03 3.22 2.330e-04 4.19
12 7.697e-02 1.06 2.662e-03 2.18 9.180e-04 3.03 4.608e-05 4.01
16 5.788e-02 1.17 1.475e-03 2.42 3.913e-04 3.49 1.473e-05 4.67

where the supplemental space SDSr (E) was constructed for the sake of H1-conformity.
We developed the direct serendipity spaces for r ≥ 3, where there are 3(r+ 1) linearly
independent supplements, of which 12 are for separating edge DoFs, and the others are
for the separation of face DoFs. We noted that not all of the supplemental functions
on a cube are naturally generalized, since we required that the space restricted to each
face coincides with a two dimensional direct serendipity space. The direct serendipity
spaces on element E for r = 1, 2 were constructed as subspaces of DS3(E).

The spaces DSr(E) depend on our choice of nine special functions. Additional
restrictions were required for the first six, λx, λy, λz, Rx, Ry, and Rz, in order to
satisfy global H1-conformity. For the other three, ψx, ψy, and ψz, their traces on ∂E
were fully determined by λx, λy, λz, Rx, Ry, and Rz, and their definition in the interior
could be decided in different ways, of which a few were presented in Section 7. The
unisolvence of DoFs naturally follows from our development of basis functions.

The restriction of the finite elements to the faces gives a set of functions that are not
merely polynomials. Rather, they are two-dimensional direct serendipity spaces. As
such, two adjacent finite elements do not necessarily merge to form an H1-conforming
space. However, we noted that this can always be done in a straightforward manner
if one uses a logically rectangular mesh.

The establishment of approximation properties closely followed [16] and [24, 25]
with a continuous dependence argument over a compact set of perturbations. An
assumption on the regularity of the mesh was made. Moreover, the special functions
used in the construction of the finite elements were required to be piecewise con-
tinuous and uniformly differentiable H1 functions of the vertices of E. Under these
assumptions, the optimal convergence rates were obtained for DSr.

We conducted numerical tests for the finite element approximation of a Dirichlet
problem on regularly and randomly distorted mesh sequences. For different choices
of the special functions Rx, Ry, Rz, ψx, ψy, and ψz in Section 7 (smooth, marching
tetrahedra, and diamond lattice cells), the performance of DSSr , DSMr , and DSDr were
compared. They all converge at the expected rates on both mesh sequences, but DSSr
with smooth supplements gives the best performance for higher r.

We close by noting that an open problem is to develop H(div) and H(curl) con-
forming mixed finite elements related by a de Rham complex to the direct serendipity
finite elements constructed in this paper. We emphasize that they are not trivially
found from the serendipity spaces. The finite element exterior calculus (FEEC) [18, 31]
suggests that the relevant de Rham sequence is

R ↪−→ H1 grad−−−→ H(curl)
curl−−−→ H(div)

div−−−→ L2 −→ 0, (124)

wherein the new direct serendipity elements approximates the space H1.
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