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Abstract

We develop a locally conservative, finite element method for the simulation of two-phase flow on quadrilateral meshes that
minimize the number of degrees of freedom (DoFs) subject to accuracy requirements and the DoF continuity constraints. We
use a mixed finite element method (MFEM) for the flow problem and an enriched Galerkin method (EG) for the transport,
stabilized with an entropy viscosity. Standard elements for MFEM lose accuracy on quadrilaterals, so we use the newly
developed AC elements which have our desired properties. Standard tensor product spaces used in EG have many excess
DoFs, so we would like to use the minimal DoF serendipity elements. However, the standard elements lose accuracy on
quadrilaterals, so we use the newly developed direct serendipity elements. We use the Hoteit-Firoozabadi formulation, which
requires a capillary flux. We compute this in a novel way that does not break down when one of the saturations degenerate
to its residual value. Extension to three dimensions is described. Numerical tests show that accurate results are obtained.
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1 Introduction

For many years now, finite element methods for Darcy
flow and transport have been developed on rectangular
and simplicial meshes. We concentrate on rectangular and
distorted rectangular meshes in this paper. However, many
methods lose accuracy when posed on distorted rectangular
meshes. In this work, we develop an accurate and efficient
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numerical method for two-phase flow in porous media
on meshes of quadrilateral elements. We also discuss
extensions to meshes of cuboidal hexahedra for problems
posed in three dimensions.

We are interested in distorted rectangular meshes
for at least four reasons. First, space discretization on
quadrilaterals uses half the number of elements compared
with discretization on triangles with the same scale %, and
on hexahedra, only 1/5 or 1/6 compared with tetrahedra.
Second, it is often desirable to construct a computational
mesh that follows some feature of the problem, such as the
boundaries of the domain or, in geoscience applications,
natural geologic layering. Both triangles and quadrilaterals
work well for this purpose, but rectangles must use a
stairstep pattern to follow boundaries and layers at oblique
angles to the coordinate system, which can lead to numerical
artifacts. Third, problems with slightly deformable porous
media require distorted meshes. Finally, with quadrilaterals,
it is possible to use a logically rectangular ordering of the
degrees of freedom, which simplifies the development of
computer programs that implement the algorithms.

A classic procedure in the finite element method is to
define appropriate finite elements on squares or cubes,
which is relatively easy to do, and then to map these
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elements to quadrilaterals or hexahedra. This works well
under affine mappings. However, a general quadrilateral or
hexahedron is not affine equivalent to a reference square
or cube. Rather, the simplest map is bi- or tri-linear, which
leads to inaccuracies in the approximation properties of
the finite element spaces. The fundamental idea we use
to circumvent this problem, used also by other authors, is
to define the finite element space directly on the physical
element instead of mapping it from a reference element.
The direct finite element will contain polynomials, and so
accurate approximation will result.

Two-phase flow in porous media is governed by a system
of two partial differential equations (PDEs) combined with
two equality constraints. The two PDEs are of parabolic
type. They can be formulated in such a way that one of
the equations is parabolic but with a small accumulation
term, so it is nearly elliptic (and fully elliptic in the case
of incompressible media and fluids). We call this equation
the pressure or flow equation, because it primarily governs
the overall fluid velocity of the system. The other equation
is then parabolic with a small—in fact degenerate—second
order elliptic diffusion/dispersion term, so the equation
is nearly hyperbolic. We call this equation the transport
or saturation equation, because it primarily governs the
saturation of one of the two phases.

Many locally conservative methods have been developed
for elliptic flow problems. We mention just a few of
these, the mixed finite element method (MFE) [17, 24],
the enhanced velocity method [44, 47], the multipoint
flux approximation methods (MPFA) and the multipoint
flux mixed finite element methods (MFMFE) [1, 31,
49, 50], the mimetic finite difference methods [30], and
discontinuous Galerkin (DG) methods [13, 29, 39, 40,
48]. We will approximate the flow problem using mixed
finite element methods, which are locally conservative
and give very accurate velocities. However, as is well-
known, classic mixed finite elements defined on a square
or cube and mapped to a general convex quadrilateral or
cuboidal hexahedron perform poorly; in fact, they fail to
approximate the divergence in an optimal way (except the
ABF and Devloo et al. spaces [11, 16, 41], which have
many excess DoFs). Recently, Arbogast and Correa [3]
resolved the problem on quadrilaterals. They defined the AC
spaces, two families of mixed finite elements that achieve
optimal convergence properties on quadrilaterals, while
maintaining efficiency by using the minimal number of
Degrees of freedom (DoFs) possible. The current authors in
[8] and Cockburn and Fu in [21] defined H(div)-conforming
mixed finite elements on cuboidal hexahedra that maintain
accuracy and use the minimal number of DoFs on general
hexahedra. (The current authors also defined some new
mixed elements on quadrilaterals similar to the AC spaces
in [7].)
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Many methods have also been devised for approximation
of the transport problem, including some of the methods
mentioned above, ELLLAM and characteristic methods [4,
9, 22, 24, 45, 46], the standard continuous Galerkin (CG)
finite element method, and the enriched Galerkin (EG)
method [35, 42]. The DG method utilizes discontinuous
piecewise polynomial finite element spaces to approximate
the solution and weakly enforces interelement continuity
by penalty terms. However, the method uses a very high
number of DoFs. The CG method uses many fewer DoFs,
but it fails to provide locally conservative saturations,
which can lead to non-physical results (such as local, non-
monotonic irregularities in the saturation profile and even
overshoots and undershoots [35]). We will use an EG
method, which resolves this deficiency of the CG method.
Sun and Liu [42] defined the EG method by enriching the
approximation space of the CG method with elementwise
constant functions and using it in the DG formulation.
The EG method significantly reduces the global number
of DoFs compared with DG, and, in fact, there is an
efficient solver for elliptic and parabolic problems with
EG approximations [35]. The EG method has been applied
to miscible displacement problems and two-phase flow in
porous media in recent works [36, 37].

We will base our finite element space for EG on
serendipity finite elements [10, 20], since these use a fewer
number of DoFs than full tensor product Lagrange finite
elements. However, it is well known that the accuracy of
serendipity finite elements degrades when mapped from a
reference element to a quadrilateral or hexahedron (at least
for elements higher order than bilinear), while Lagrange
finite elements maintain accuracy [10, 32, 34]. Recently,
the current authors introduced new, direct serendipity finite
elements [7] that have the same number of degrees of
freedom as the classic serendipity elements but maintain
accuracy on general non-degenerate convex quadrilaterals.
We will use these elements.

We remark that one could use the EG method to solve
the flow problem. An EG method can be designed that is
locally conservative for the average fluid flux, i.e., so that
there is no net loss of mass. We chose to use mixed finite
element methods because they are strongly and higher order
conservative. By strongly conservative, we mean that the
normal flux is continuous on the boundary of the elements,
which is not true of EG fluxes. By higher order conservative,
we mean that mixed methods preserve the divergence of the
velocity up to some polynomial order. EG only preserves
the average divergence of the flow.

There are many ways to separate the PDE system into
flow and transport problems. We use the approach promoted
by Hoteit and Firoozabadi [27, 28], solved using an IMPES
operator splitting algorithm [19]. The formulation requires
the construction of the divergence of the capillary flux,
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and we will provide a novel implementation that does not
break down when the system degenerates (i.e., one of the
saturations tends to its residual value). To avoid spurious
oscillations due to sharp gradients in the solution of the
transport problem, the stabilization technique of Guermond,
Popov, and collaborators [18, 26, 51] will be used.

To simplify the presentation, we concentrate on applying
our new method to problems on quadrilateral meshes. In the
next section, we define the finite elements that we use on
quadrilaterals. The equations governing two-phase flow are
given in Section 3. We give the finite element method for
flow in Section 4 and for transport in Section 5. The IMPES
coupling and extension to three dimensions is described
briefly in Sections 6 and 7, respectively. Numerical tests are
given in Section 8, and we summarize and conclude our
results in the final section.

2 Direct finite elements on quadrilaterals

In this section, we review the finite element spaces that we
will use. Let 2 C R? be a polygonal domain with boundary
0€2, and let v denote the outward unit normal vector on the
boundary. We impose a conforming finite element mesh 7y,
of quadrilaterals over the domain 2 of maximal diameter
h. We will assume that the mesh 7, is shape-regular [3,
25], which ensures that the mesh elements are not highly
elongated nor degenerate nearly to triangles. The outer unit
normal to element £ € 7 is vyg. The set of all interior
edges or faces of 7}, is its skeleton, and it is denoted by &j,.
Fix a unit normal vector v,, for each edge y € &j,.

Let P, = span{xiy*" : i = 0,1,...,k} be the
vector space of homogeneous polynomials of exact degree
k > 0, and let P, = @ﬁ:o P, = span{x'y/ : i,j =
0,1,...,k; i +j < k} denote the space of polynomials
of degree up to k > 0. Let Q = span{x’y/ : i,j =
0,1, ..., k} be the space of tensor product polynomials of
degree up to k > 0. Finally, IP’,% is the space of 2-dimensional
polynomial vectors for which each component is in P;. We
may specify that the domain of definition of the polynomials
by writing, e.g., Py (E) for domain E.

At times, we will need a reference element, so fix it to
be the square E = [—1,1]%. For E € T, the standard
bilinear map Fg : E > E mapping vertices to vertices
is bijective. This gives rise to the map Fg, which maps a
functionf E— Rtoafunction]-'g(f) =f:E— Rby
the rule f(x) = f (X), where x = Fg(X). We also have the
Piola transform Pg based on the bilinear map Fg. It maps a
vector v : E — R2toavectorv: E — R2, and it preserves
the normal components v - ¥ as v - v within integrals, where
D is the outward unit normal vector on the boundary of E
[17].

2.1 The AC mixed finite element spaces

Arbogast and Correa developed two families of mixed finite
elements on quadrilateral meshes [3] for approximating
(u, p) solving a second-order elliptic equation in mixed
form
u=-aVp, V.u=f inQ, uwu-v=0 onadQ, (1)
where f € L*(Q2) and the tensor a is uniformly positive
definite and bounded. For £ € 7, and index s > 0, the
AC elements are defined in terms of polynomials and a
supplemental space of functions Sf‘C(E). In terms of the
vectors xP; = {(x,y) px,y): p€ I@s}, the family of full
H (div)-approximation elements are

Se(E) =P @ xP; @ S{C(E) and Wi (E) =Py, (2)

while the family of reduced H (div)-approximation ele-
ments are, for index s > 1,

VEEYE) = P2 @ SAC(E) and WilY(E) = Pyy. A3)

The vector elements merge together to form H (div)
conforming spaces over 2 (i.e., the normal components of
the vectors are continuous across each y € &), while the
scalar elements remain discontinuous on 2. The former
family approximates u, V - u, and p to order (’)(h”l),
while the latter family approximates u to order O(A**!) and
V -u and p or order O(h*), as long as the mesh is shape
regular. These are the optimal convergence rates. Moreover,
the elements have the minimal number of DoFs possible for
these rates under the restriction of H (div) conformity.

Using the Piola transformation Ppg, the space of
supplemental vectors on E is

AC _ | span{o], 05}, s > 1,
S8 = { spanfo®), s =0, X
where 07 = Pgo,i =0,1,2,and
68 =curll® 11 - D3, s> 1,
& =curlF9° 11— 57), s=1, )

6% = curl(£9), s =0,

are defined on the reference element E. Different from the
implementation of classical mixed finite elements, the Piola
mapping is only used to define the supplemental vectors. It
is easy to implement these elements using the hybrid mixed
finite element formulation [12, 17].

@ Springer



Comput Geosci

2.2 Direct serendipity elements

The current authors defined families of direct serendipity
finite elements in a recent paper [7]. On E € 7Ty, the element
of index r > 1 takes the form

DS, (E) =P, ® SP5(E), (©6)

and each family of elements is determined by the choice
of the two supplemental functions spanning SrDS(E). The
space can be merged into continuous (i.e., H' conforming)
finite elements, and it has a minimal number of degrees
of freedom (DoFs), which are depicted in Fig. 1. Its local
dimension is

1
dimDS, (E) = dimP, +2= -+ +D+2. ()

A very general and explicit construction of these supple-
ments is given in [7]. They can be defined directly on E, or
they can be defined on E and mapped to E. In this work,
we recall and use one of the simplest families of direct
serendipity elements.

When r = 1, it is known that the standard space of
bilinear polynomials QQ; defined on E and mapped to an
element £ € 7, maintains accuracy [10]. These have the
form (6), with

SPS(E) = span{Fg (£3)}. 8)

Henceforth, we only describe the new direct serendipity
finite elements for indices r > 2.

For the element £ C 7, let v; denote the outer unit
normal to edge i (denoted ¢;),i = 1, 2, 3, 4, and identify the
vertices as Xy, 13 = €1 Ne3, Xy,14 = e1 Nes, Xy 23 = e2Nes,
and X, 24 = ez N e4 (see Fig. 2). We define the linear
polynomial ¢; (x) giving the distance of x € R? to edge e; in
the normal direction as

Lix) =—(x—x7)-v;, i=1,2,3,4, ®
r=2 r=3
i r=4 i ) r=>5

Fig. 1 The nodal points for the DoFs of the direct serendipity finite
element for small r
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Fig. 2 A quadrilateral E, with edges e;, outer unit normals v;, and
vertices Xy, 13, Xy,23, Xy,24, and Xy, 14

where X; € e; is any point on the edge. The functions are
positive over the interior of E.

When r > 2, we can define the shape functions
associated to each vertex as

Dv,13(X) = LL(X)4(X), ¢y, 14(X) = L2(X)€3(X),

(10)
$v,23(X) = £1(X)€4(X),  Py,24(X) = £1(X)£3(X).

Interior shape functions appear when r > 4. In this case, we
take the shape functions

$rj C OGP, 4, j=1,....50¢ =2 —3) (11)

so that they span the entire space £1£2£3£4P,_4. Since these
are internal to E, the precise choice of basis is not so
important.

The most interesting shape functions are those associated
to the edges. Let

by =43 —4€4 and Ly =4{1 — Ly, (12)

and define rational functions

£1(x) — £2(x)
£ 0@+ x
03(x) — La(x)
£ (0 + 0y )

Ry (x) = 13)

Rp(x) =

(14)

(note that the denominators do not vanish on E), where
vy = (V3 —v4)/|[v3 — 4|, vy = (V] —v2)/|V1 — V2, and

&' =T W% 0y =T wn (1)
& =V1— v -v)? ! =V -y -v2 (16)

Therefore,
Ry(X)|e; = —nv  and Ry (X)|, = §v, (17)
Rg(X)|e; = —np and Ry (X)|e, = &H. (18)
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There are 2(r — 1) shape functions associated to the edges
e1 and ey, and they are

dr. (%) = 600X, ®, j=0,1,...,r—2, (19)

GH,r—1+;(X) = 53(X)€4(X)EV(X)%(X), (20)
j=0,1,...,r =3,
dr2r—3(X) = Zs(X)&(X)Rv(X)WH_Z(X)- 21

In a similar way, shape functions associated with edges e3
and e4 are

Py, i (X) = El(x)ﬁz(x)f{,(x), j=0,1,...,r=2, (22)

D145 (%) = €1 ()€ (X) Ly (X)L, (%), (23)
j=0,1,....r -3,
bv.2r—3(X) = £1(X)L2(X) Ry () €72 (x). (24)

The edge shape functions are regular polynomials of degree
r except the last two functions in each direction, which are
rational functions. However, all shape functions restrict to
polynomials of degree r on the edges.

Finally,
SPS(E) = span{€304€7 2Ry, £16265 2 Ry}, (25)
and
DS, (E) = span{@y,13, $v,14. $v.23, bv.24. (26)

bu. v (j=0,1,...,2r —3),
ppx (k=1,..., 50 =2 —3))}
P.(E) ® SPS(E).

The unisolvence of the direct serendipity finite element
space is proved generally in [7], or specifically for this
choice of Ry, Ry, £y, and £y in [6]. A nodal basis can be
constructed using local linear algebra as described in [6, 7].

2.3 Enriched direct serendipity spaces

Let the discontinuous finite element spaces of order r over
T be

XPS(T) = |6 € L@ : 9le € DS,(E), E € Ta. 27)

X2(T) = |6 € 12@): 9l = Fe (@, 28)
$€Q(b). EcTil.

XP(T) = {9 € LX) ¢ls € P(E), E€Tif. (29)

We remark that X2 = X[ are the spaces of piecewise

constants on each element. The continuous finite element
spaces of order r over 7, are

XP5(Tw) = XPS(T) n (), (30)
X2 = X2(Th) N, G1)

where C%() is the set of continuous functions over .
Finally, we define the enriched finite element spaces of
order r over T, as

xPS(T) = XPS(T) + X2 (T, (32)
X2(Tw) = X2(Th) + X (Th). (33)

When used in a standard discontinuous Galerkin weak
formulation, we can obtain locally mass conservative,
discontinuous or enriched Galerkin approximations. We
denote these methods by DG-Q,, DG-P,, EG—QF, and EG-

DS,, using, respectively, the elements X,Q (Tn), XF(Tn),
X rQ (Tn), and X ,DS (71). In Table 1, we show the number of
degrees of freedom of these four methods for an n x n two
dimensional quadrilateral mesh. All the methods achieve
the same convergence rate. The EG-DS; methods utilize the
fewest number of degrees of freedom.

It is difficult to compare run times of the implementation,
due to the many specific coding decisions that one must
make when writing a computer program. Generally, the
linear solver time will dominate for large problems and
this time will be proportional to the number of degrees of
freedom. To illustrate this, we present a study of the wall
clock time to assemble and solve the linear systems. The
tests were conducted on a single computer with four Intel®

Table 1 A comparison of the

global number of DoFs of r DG-Q, DG-P, EG-Q: EG-Ds,
DG-Q,, DG-P,, EG-Q,, and
EG-DS, on an n x n mesh 0 n? n? — —

1 4n? 3n? 2n% +2n + 1 2n% +2n + 1

2 9n? 6n> 5n% +4n + 1 4n? +4n+1

3 16n? 102 10n? 4 61 + 1 6n* +6n + 1

4 25n2 1512 17n% +8n + 1 9% +8n+1

5 36n? 21n? 26n2 4+ 10n + 1 1302 4+ 10n + 1
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Core™ i5-4570 CPUs at 3.20 GHz and 8 GB total memory
(RAM). We solve Laplace’s equation —Au = f on the unit
square with the exact solution u(x, y) = sin(zwx) sin(;ry).

In Fig. 3, we compare EG using both Q. and DS, with
r = 2 and 5 on an n x n mesh of quadrilaterals. Solid lines
show the time cost, in log scale, versus n of the assembly
routines, which depend linearly on the size of the problem.
Construction of the DS, basis requires the inversion of
a small matrix on each element, but the basis for Q, is
precomputed for a reference element and then mapped to
each element. Compared to Q,, we see a longer assembly
time for DS, but less time for DSs. This is due to the local
number of degrees of freedom, which are (r + 1)2 versus
r+2)r+1)/2+2,i.e.,9 versus 8§ when r = 2 but 36
versus 23 when r = 5.

We use either a sparse direct solver (UMFPACK [23])
or a Jacobi preconditioned conjugate gradient (PCG) solver.
In Fig. 3, dashed lines show the linear solver times, and
the slopes are all similar (and steeper than the slope for the
assembly routines). Both solvers show faster performance
for DS, except PCG when r = 2, for which Q, and
DS, perform very similarly. Overall, when n = 128, DSj
takes about half of the time of @5, which is consistent
with the number of degrees of freedom in Table 1. Finally,
we remark that the time cost for the assembly routines
scales well in parallel, since they basically involve only
local computations. Therefore, reducing the global number
of degrees of freedom by using DS,, even perhaps at

Fig.3 Wall clock times, in log
scale, versus n of assembling the
linear systems and solving the

the expense of a slightly more expensive assembly, is
worthwhile compared with Q.

3 Two-phase flow formulation

Let subscript w denote the wetting phase and subscript
n the non-wetting phase. The pressures, Darcy velocities,
and saturations of each phase are denoted p,, u,, and S,
respectively, « = w, n. The Darcy velocity of each phase
satisfies

Uy = —MK(VIM — pagV2),
Mo

where k. is the relative permeability of the @ phase, which
depends on the water saturation S, K is the absolute rock
permeability, 1, and p, are the viscosity and density of
the o phase (here assumed constant), g is the gravitational
constant, and Vz defines the direction of gravity. Volume
balance requires the algebraic constraint

o =w,n, (34)

Sw + 85 =1, (35)
and conservation of mass requires

aS
¢8_ta+v'uﬂl=q0h (XZU),}’Z, (36)

where ¢ is the porosity and g, are the source or sink (i.e.,
well) terms. One also needs the capillary pressure relation

Pc(Sw) = pn — Pw- (37

linear systems with either a 10°
sparse direct solver or a Jacobi

preconditioned conjugate

gradient solveron ann X n

quadrilateral mesh for Q, and

DS, with r = 2 (left) and 5

(right)

-

o
[
T

wall time (ms)

-

o
N
T

108

A 105¢ i

wall time (ms)
-
o
IS
T

—=—Q22 Assembly —&-Q55 Assembly

-+ Q22 SparseDirect -+ Q55 SparseDirect
Q22 CG-Jacobi Q55 CG-Jacobi
—=—-DS2 Assembly -a—DS5 Assembly
-+ DS2 SparseDirect -+ DS5 SparseDirect

DS2 CG-Jacobi DS5 CG-Jacobi
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One typical capillary pressure function is given by

Pe(Sw) = —Bclog(Se,), (38)

where B, is a positive parameter inversely proportional to
J IIK]| (for some norm of K, should this be a tensor) and the
normalized saturation S, is given by
_ Sw - Srw

1— 8w — S’
where S, are the residual saturations for the wetting

and non-wetting phases. A simple example of the relative
permeability of each phase is given by

S, (39)

krw = Sf and k,, = - Se)ﬁa (40)

where S is a positive parameter. Other commonly used rock
models are those of Brooks-Corey and van Genuchten [15,
19].

For a classical formulation, introduce the phase mobili-
ties

a=w,n, (41)

the total mobility

At = Ay + A, (42)
and the fractional flow functions
A
Jo=—, o =w,n. (43)
At

Sum the mass conservation (36) and combine with the
algebraic constraint (35) to obtain the flow equation

V.w =gq, (44)
where u; = uy, + u, is the total flow velocity, and
u; = —KVpy — 4KV pe + (1) gKVz, (45)

where g; = qy + gn, (PA)r = pwAw + PuAn. Therefore, the
phase velocities u,, and u,, are related to the total velocity
by

uy, = fuu + KA, fu Ve + KAy, fu(ow — 0n)gVz, (46)
u, = fuu, — KAy fuVpe +Khy fu(on — pw)gVz. @47)

The saturation equation for the water phase becomes

dpe
ds,

+ (Pu = P)EVZ) + FulSults| = gu.

Sy
0=+ V K Fu(Su)hn (Su) (F5-V S0 (48)

We have three unknowns {p,,u;, Sy} in the three (44),
(45), and (48), which together comprise a well-defined
system (see, e.g., [2]).

The classical formulation is challenged when the
capillary pressure is degenerate or discontinuous. Suppose

the water saturation is near the wetting phase residual
saturation S,,. Then the non-wetting phase mobility is
about 1/u,, and at the same time the capillary pressure
and its derivative tends to infinity, i.e., pc(S;y) — 00
and p.(S;w) — oo. Thus, the term A,KVp. in Eq. 45
also tends to infinity. If we choose the non-wetting phase
pressure p, as our primary variable instead of p,,, we can
avoid this singularity around S,,. However, if the derivative
of the capillary pressure also tends to infinity at the non-
wetting phase residual saturation, e.g., in a van Genuchten
model, we will meet the same problem even with the non-
wetting phase pressure as the primary variable. Moreover,
when there are different rock types present, i.e., capillarity
is heterogeneous as in Eq. 38, the spatial gradient of the
capillary pressure V p. also tends to infinity.

3.1 The Hoteit-Firoozabadi formulation
In [27, 28], Hoteit and Firoozabadi presented a new

formulation that avoids the drawbacks of the classical one.
They use the classic flow potential

Dy = po + pugz, o« =w,n, (49)

which leads to the capillary potential
G =0, — Dy = pc+ (on — Pw)EZ- (50)

The total velocity uy is then written in terms of two velocity
variables u, and ug, as follows:

u = u, +u, (€29)
u, = 1KV, (52)
u. = —1,KVo,. (53)

The velocity variable u, has the same pressure driving
force as the wetting phase velocity u,,, but it has a smoother
mobility A, rather than A,. Since the total mobility A; is
strictly positive, the value of )L,_l is bounded. The wetting
phase velocity is then simply

A
u, = A—“’(—A,chbw = fulla. (54)
t

We rewrite the flow equation with the new splitting and the
saturation equation in terms of u, to obtain

V-u,=¢;—V-u,, (55)
0S8y
d’? =quw — V- (fwla). (56)
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4 Approximation of flow and construction
of the capillary flux

For ease of exposition, we collect the equations from the
previous section that govern flow, and we add appropriate
boundary conditions. At a fixed time ¢,

u, = —KVd,, inQ, 57
V.u, =¢q¢:—V-u, in 2, (58)
o, = dp onTp, (59)
u,-v=ug—u.-v only, (60)

where 02 = I'y U I'p has been decomposed into disjoint
Neumann and Dirichlet parts of the boundary and dp and
up are given. We assume that y € &, lies within either
I'p or 'y, and denote &, p = & N I'p and &8 =
En N T'y. At each time step, we will solve the system for
the unknowns u, and ®,,, assuming that u, and the wetting
phase saturation S, are given.

4.1 A mixed method for the flow equation

For E € Ty, let Vi, (E) x Wi (E) denote the mixed finite
elements used, which in our case are AC elements of index
s > 0, as described in Section 2.1 (although one could
use any of the direct mixed finite elements defined in [7]).
If one restricted to rectangular meshes, one could use the
classic Raviart-Thomas (RT) elements [38]. We solve (57)—
(60) using the hybrid form of the mixed method [12, 17]. To
this end, we define the Lagrange multiplier space M}, to be
the set of piecewise polynomials of degree up to s defined
on each of the skeleton &,. Then the global mixed spaces are

Vi = {vi:vulg € Vi(E) VE € Tp},

Wi = {wn : walg € Wi(E) VE € Tp},

My = {pn = unly € Ps(y) Yy € Eny € Il

Note, that we do not enforce H (div) conformity on V.
The hybrid mixed finite element formulation is as

follows: Find u, , € Vj, @, 5 € Wy, and &)w,h € Mj, such
that

f(x,Krlua,hvh— > / A (61)
Q E

E€Ty,

+ Z / &)w,hvh'vaE:_/ éBthv Vv, € Vy,
s JOE\TD I'p

> f Vg wh=[<qt—V-uc.h>wh Yw, € Wi, (62)
EeTy E Q@

> / Ug - VOE by = / (up —uc-v) pp (63)
IE\T r
EeTh \o N Yun € Mp.

@ Springer

Since At_l is always bounded, the first term in Eq. 61 is
well-defined. The approximation spaces Vj, and W), are
defined elementwise and the continuity is only enforced
through the Lagrange multiplier ®,, on the skeleton of the
mesh 7. In terms of the DoFs of the solution, we obtain
the following algebraic problem

A, —B L\ [uap dp
BT 0 of[ewn|=1{20]. (64)
L™ 0 0/ \d,, Up

where A, is symmetric positive definite and block diagonal,
with block size equal to dimVy(E). Using the Schur
complement technique, we can express

u, = A (®p + BPyy — LOu ), (65)
and therefore

LTu,p = LTA N (®p + BDyj — Ldyy) =0, (66)
BTu,p = BTA (@5 + BDyj — LOys) = Up.  (67)
If the lowest order RT spaces are used, Egs. 65-67 is

equivalent to equations used in the work of Hoteit and
Firoozabadi [28, equations (17), (20), (25)].

4.2 Construction of the capillary flux

The capillary flux u, is defined by Eq. 53, ie., u, =
—A, KV®,.. We have assumed the saturation S, is given,
so ®.(Sy) is known inside each element. However, Sy,
is discontinuous on y € &, so0 A, is not known on the
skeleton. Moreover, it vanishes at S, = 1 — §,,,, so we
cannot invert it. A weak form of the equation is to solve it
locally on each E € 7} as follows: Find u., € Vj and
dA)c,h € M), such that

/ K_]uc,hvh +/ ci)c,h )A\nvh "Vy (68)
E oE

=/ Qe (Sw)V - An(Sw)Vr)  VVi € Vi(E),
E

and impose continuity of the capillary flux

> [ v =0 Vius € iy, (©9)
hoy JOE

where 4, is the interface value of A, (Sy). Note that in this
model, the capillary flux is set to zero on 92.

Following [28], the matrix form of the equations can be
written as

A Ly\ (uch B, @,
A = 7
(7 §)G)=(%0"): g
and we can eliminate the variable u.j; through a Schur
complement, i.e.,
u. = A7 (Br®c — L), (1)
LTac) = LTATY(Bi®, — Lydc ) = 0. (72)
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Knowing ®., we solve the latter equation for Ci’c,h and
construct u. ; from the former equation. Equation 72 is
equivalent to [28, equation (31)]. The matrix LTATYL, is
singular if A, = 0, and in that case, the linear system (72)
cannot be solved. In [28], an upstream strategy is applied
to resolve the singularity. However, if the whole region is
filled with the wetting phase (S, = 1), we can not borrow a
nonzero A, from any neighboring elements.

In order to solve the degenerate equation, we provide an
alternate approach. Let Eh = ):,, Ci>c, 1, and solve in place of
Eq. 68: Find u. 5 € V;, and Eh € Mj, such that

/ Kuesvn + / Eavi v, (73)
E 0E
_ f B(Su)V - (n(Sw)V) Wi € Vi(E).
E

Now the matrix form of this with (69) is

A L Ue p _ BAqDC
(& o) (5) = (%3"). @

and so
u., = AN (Bade — L), (75)
L™u. )y = LAY (B @ — LE;) = 0. (76)

The Schur complement LT A~!'L is now symmetric and
does not depend on the value of saturation. The solution
can be shifted by a constant and the differential equation
still holds, so we need to set a constraint on the average or
assign a Dirichlet boundary condition on a small portion of
the boundary. Then the Schur complement system is non-
singular and can always be solved. Once g:h is found, we can
construct u. , by Eq. 75 and finally we obtain the capillary
source BTuc, » needed in Eq. 62.

We remark that in [37] and [5], the authors enforce the
continuity of the capillary pressure p. (or ®, with the
gravity igonored) by penalizing the interface jump in p.. In
this work and in [27, 28], weak continuity of the capillary
flux u, is enforced across the face, and no penalty parameter
is required.

5 Approximation of transport with entropy
stabilization

The saturation (56) will be solved assuming that u, is
known. In that case, it is of hyperbolic type for the
saturation. For simplicity, we impose Neumann conditions
on the boundary 0€2. To this end, decompose it into two
disjoint parts, 32 = I';, U 'y, where the inflow boundary
isj, = {xedQ: u,-v < 0}, and the outflow boundary
is Iy = {(x€0Q: u,-v > 0}). We impose the inflow
boundary condition Sy, = Sp on I';;,, where Sp is given.

Because (56) is hyperbolic, numerical schemes need to
be stabilized. We choose to stabilize our hyperbolic equation
by adding an entropy viscosity pj. The stabilized transport
problem, posed for r > 0, becomes

Sy
¢W -V. (,uhVSw) =dqw — ' (fwua)
(Swug — upVSy) -v==_Sgu, -v
_,uthSw v=0
Sw(x, 0) = So(x)

inQ, (77)

onT;,, (78)
on oy,  (79)
for x € 2. (80)

The inflow condition (78) corresponds to S, = Sp for the
unstabilized Eq. 56 (i.e., up = 0).

5.1 Enriched Galerkin for the saturation equation

Let subscript m = 0,1, ... denote the time step index.
Within a transport time step (¢, +1] we assume that we
know the velocity u and the wetting phase saturation S
at the earlier time ™.

We assume that the mesh skeleton & is aligned with the
interfaces between I';, and I',,;. Let the set of boundary
faces in &, be denoted by I'j, ;, and ' oyr. Suppose two
elements E; and E; in 7, are neighbors, so y = 9E; N
0E; € &, is nonempty, and that the unit normal v,
points from E; to E;. For a function ¢ which is piecewise
continuous on each E € 7T, we define the average and jump
ony as

1
0l = 5 (@le)l, +@le)l, ). 81)
[el, = (¢>|E,-)|y —(¢|E,-)|y~ (82)
Let the upwind value of the interface saturation be

S*,m| — SZ}'E,’
w Y SmlE-
wlEj

Define the interior penalty term J, mapping to R as

3 m
ifu} -v, >0,

itu -v, <0. (83)

2
Jolssw) = 3 iy fy sy Ll (84)

ye€n

where o, > 0 is the penalty parameter for face y € &, r
is the degree of the polynomials used in the finite element
space, d = 2 is the dimension of the domain, and |y| is the
measure of y. Let

apg(s, w) = Z / wp'Vs - Vw + Jo (s, w) (85)
E€Ty E

Z f{u;’st-vy}y[[w]]y

ve& Y

— Sform Z /{N«va vy Yy sy,

ye&n "V
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where u;’f will be defined in the next subsection and sform €
{—1, 0, 1} determines whether one chooses to use the non-
symmetric (NIPG, sform = —1), incomplete (IIPG, sform =
0), or symmetric (SIPG, sform = 1) interior penalty Galerkin
formulation. Let the linear functional L{j;(w) for the time
step m be

Llc(w) = /quuwr >

Fu(SIHWl -V (86)

E€Ty, E
-2 / Fu S5 vy [w],
ye& Y
- > /fw(sg)u;”-vyw
VEFZTOM 4
-y /fw(S%l)ua’"myw.
)/EFZIJ,, 4

Finally, after applying backward Euler for the time dis-
cretization, we have the fully discrete Galerkin formulation:

Given S . find S)'t" € X (75) such that
SSuh — S i
[ e o+ aff S wn) (87)
= Lpg(wn)  Ywy, € X5, (Th),
(@S9 - wn) = (@S0, wn)  Ywy, € X5 (Th), (88)
where 8"t = ¢+l — ™ and X, (T;,) can be any of

the discontinuous Galerkin finite element spaces defined
in Eqs. 27-29 or any of the enriched spaces defined in
Egs. 32-33.

5.2 Entropy viscosity

We review the entropy viscosity method of Guermond,
Pasquetti, and Popov [26] for the conservation law

dc+ V- (F()) =0. (89)

An entropy pair is a set of functions E(c) and F(c) such that
E(c) is convex and F'(¢) = E’(¢) F'(c). The function E(c) is
called an entropy, and F(c) is called the associated entropy

flux. A commonly used choice is E(c) = %cz. Then the
entropy solution of Eq. 89 satisfies
0:E(c) + V- (F(c)) =0, (90)

with equality holding except at the shocks.

Given a numerical approximation cj (-, t) at time ¢, we
define the entropy residual
Ry(-,t) = 8,E(cn (-, 1)) + V - Flen (-, 1)). On
Following [18, 26, 36, 51], we use this residual to define a
viscosity ug on each E € Ty, as

1R lloo, E
IE(ch) = E(en)lloc,”

uE = Aehy (92)
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where Ag is a tunable parameter, iy = diam(E), || - |lco
is the maximum norm, the denominator is a normalization
constant, and E(c;) = ﬁ fQ E(cp). However, in our
applications, the (true) saturation is always between 0 and

1, and we intend to take the entropy E(c) = %cz, so the

normalization ||E(cp) — I_E(ch)||oo,g < 1/2. Therefore, we
can simplify the entropy viscosity (92) to

fie = 2re hg | Rnlloo, £ < pe- 93)
We introduce an upper bound

Mmax = Amax R E ”f/(ch)”OO,Ev 94)

for some tunable parameter Apax and set the entropy
viscosity as

M = Min(Amax, LE)- 95)
The original problem is modified to
dc+ V- (F(c)) —V-(urVe)=0. (96)

Now for our (56), we adapt the ideas as follows. We define
the fully discrete entropy residual

(sm 2 —(smhr
Il TSI fu(SI VS,

+o IS fu (ST OV U, 97)

m __
R/’l -

locally on an element E' € 7j, (so the term VS, is well-
defined). In fact, we drop the final term, since V- u} = 0
except at wells. We define /i)’ using Eq. 93, evaluating the
maximum of | R}"| by considering only the quadrature points
used in the numerical integration formulas. Similarly, we
evaluate (94), which is now

I = Mmax hE 197 S0, i (S )G oo (98)

and then we can set w1}’ as in Eq. 95.

6 IMPES coupling of flow and transport

We summarize the solution procedure, which is of the
implicit pressure, explicit saturation (IMPES) type [19]. The
wetting phase saturation SS;, n € Xn(Tp) is given as an
approximation of the initial condition Sp in Eq. 80, perhaps
as the L? projection as stated in Eq. 88. We set S, b= SS) h
to start the algorithm. ’ ’
Now for time step (¢, L, s~ and §™ , are given,

w,h w,
and we do the following substeps.

1. Constructu, € V; and 2;, € Mj, by solving (73) and
(69) using S, in place of S,. That is, solve (76) for

the DoFs of £;, and then define the DoFs of uy’, using
Eq. 75.
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Table2 A comparison of the

global number of DoFs of r DG-Q, DG-P, EG-Q, EG-DS,

DG-Q,, DG-P,, EG-Q,, and

EG-DS, onann x n x n mesh 0 n? n’ — —
1 8n3 4n3 203 +3n3 +3n+1 203 +3n +3n+1
2 27n3 10n3 93 + 12n% 4+ 6n + 1 513 +9n2 +6n + 1
3 64n> 2013 2813 +27n% +9n + 1 8n3 4+ 1502 +9n + 1

2. Solve the flow system (61)—(63) for u;", n € Vi, <I>'£, n €

Wh, and &D’U')’ » € M), using the given saturation S;! , and
the capillar3; flux u!”, from the previous substepj That
is, solve for the DoFs using Egs. 65-67.

3. For each element E € 7, compute the entropy
viscosity ;' from Eqgs. 97, 93, 98, and 95. This requires

m—1 m m .
wh o Sw.p» and ug’ from the previous substep.

4. Solve the stabilized transport (87) for Sﬁj;l e Xn(Tw)
using S, and, from previous substeps, u’ and uf,.
This can be done efficiently using the linear solution
techniques developed in [35].

7 Extension to three dimensions

Our results extend to three dimensions, that is, to meshes of
cuboidal hexahedra. New families of mixed finite elements
that approximate the velocity and pressure accurately were
defined by the current authors in [8], and they have the
minimal number of DoFs for general hexahedra. One
could also use the macro-elements of Cockburn and Fu
[21]. Unfortunately, at this writing, it is not known how
to define serendipity elements that maintain accuracy on
general hexahedra. However, direct serendipity elements
were defined in the Ph.D. dissertation of Tao [43] for special
hexahedra, namely, truncated cubes. A truncated cube is a
cuboidal hexahedron with two pairs of parallel faces (so the
cross-section is parallelogram).

Fig. 4 An example of the square domain with a hole. There are 128
convex quadrilateral elements in this coarse mesh

The dimension of the direct serendipity element of index
r on a truncated cube is dim P, 4 3(» + 1). Table 2 shows
the number of DoFs for an n x n x n mesh. Compared with
using fully discontinuous spaces or standard mapped tensor
product elements, the reduction in the number of degrees of
freedom is much more significant than in two dimensions.
The enhanced Galerkin method is also dramatically better
on hexahedra than using tetrahedra, since it takes at least
five tetrahedra to fill a fixed hexahedron.

Pressure
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[\
(91
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<
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V)]

T v .

©
W
o

Velocity
Magnitude

1.805
1.354
0.903

0.451

mIHIIH‘HIIHHm

2e-8

Fig. 5 The pressure (top) and velocity field (bottom) of the coupled
flow and transport system. The color indicates the magnitude of the
velocity field, and the arrows indicate the direction
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Fig.6 Concentration values for
each time step m. The left
column is simulated with

Amax = 1, Ag = 00 (s0

h = [max), and the right
column is simulated with

o

omax = 1, Ag = 0.5 (0 1.00 100
Mhp = min(fmax, AE)) E
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Fig. 7 An example of the mesh for the 3D concentration flow at
refinement level 2 with 4 x4 x4 truncated cubes. The actual simulation
results use a refined mesh at level 5 of 32 x 32 x 32 truncated cubes

8 Numerical tests

In this work, the absolute permeability tensor is chosen as
K = kI, where I is the identity matrix and k£ > 0 is
possibly heterogeneous over the domain. We consider three
numerical test cases. They all use sform = —1, i.e., the
NIPG variant of the method. We implemented the numerical
methods within the deal Il framework [14].

8.1 Coupled flow and transport

We begin with a simple test of the numerical procedure,
taken from [42], except that we use quadrilateral or
hexahedral mesh elements instead of triangles.

Let A, = 1, fuy(Sw) = Sy, and ignore capillary and
gravity forces. The model reduces to a coupled linear flow
and transport model that is used to represent single phase
flow of the concentration ¢ = §,, of a dilute solute. That is,
we have

u=-KVp in 2, 99)
V.u:q inQ, (100)
0
qba—(; £V (cu— Vo) =g inQ. (101)
We take ¢ = 1, set k = 1, and assume that there are

no injection nor extraction sources within the domain (i.e.,
q =qc.=0).

8.1.1 Two dimensions

The problem is solved in a unit square with a circular hole
in the middle. The flow (99)—(100) is given a Dirichlet
boundary condition p = 1.5 at the left side and p = 0.5 at
the right, and the top and bottom sides, as well as the circular
hole, are given a no-flow Neumann boundary condition

(u-v = 0). The transport (101) is given an inflow boundary
condition ¢ = 1 on the right side (i.e., on [';;), and the initial
condition is ¢ = 0.

Figure 4 is an example of the mesh at refinement
level 2 with 128 convex quadrilateral elements. The actual
simulation is conducted with a similar mesh at refinement
level 5 with 8192 convex quadrilateral elements.

The velocity u is approximated using the first-order full
H (div)-approximation Arbogast-Correa space (u;, € ACy)
[3], which means that the pressure is approximated by a
discontinuous polynomial of degree 1 (ie., pp € X f ).
In Fig. 5, we show the pressure and velocity for the flow
problem (99)—(100).

The transport (101) is solved using the EG-DS, method,
ie., we take X4(Tp) = XP5(T,) in Eq. 87. The time
step is 8t = 0.1hpiy = 0.00105998, where hpi, is the
minimal cell diameter of all elements in the mesh 7.
The simplified version of entropy viscosity is applied. The
results are shown in Fig. 6, where the left column shows the

pressure

E1.000e+00
=0.75019

e

£0.50013

E:O.25006
0.000e+00

T

velocity Magnitude
3.823e+00

i)

2.8674

9121

ol

=0.95679

st

1.486e-03

Fig. 8 The pressure (top) and velocity field (bottom) of the coupled
flow and transport system in 3D. The color indicates the magnitude of
the velocity field and the arrows indicate the direction of flow
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Fig.9 Concentration values for
each time step m. The left
column is simulated with

Amax = 1.0, g = 00 (s0

h = Imax), and the right
column is simulated with

Amax = 1.0, g = 0.5 (so

Mp = Min(Umax, AE))
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Fig. 10 Computational domain for example 1. There are 70 x 100
randomly distorted quadrilateral meshes and the permeability is 0.5 in
light zones and 0.01 in dark zones

concentration values at time step m = 200, 500, 800, and
1000 when only the maximum stabilization is applied (i1, =
MUmax)- The right column of Fig. 6 shows the concentration
values at the same time steps with the entropy stabilization
(un, = min(umax, g)). It is obvious that the concentration
values with the entropy stabilization show a sharper front.

Our numerical results compare favorably in accuracy
to those of Sun and Liu [42]. The advantage of our
approach is that we use many fewer DoFs. We achieve
this by using quadrilateral elements and serendipity-
based enriched Galerkin finite element spaces rather than
triangular meshes. This test was also performed in [35],
and again we see comparable accuracy. However, that work
was constrained to use rectangular meshes for accuracy, and
so the internal hole was modified to be a rectangle. We
were not subject to this restriction, since our methods are
accurate on quadrilateral meshes and we can follow a curved
interface with them (recall Fig. 4).

8.1.2 Three dimensions (3D)

For a 3D numerical simulation of Eqs. 99—-101, the problem
domain is Q = [0, 1]°. We put a low permeability block
Q. =1[3/8,5/8] x [0, 1] x [1/4,3/4] in the middle where
k = 0.001, and k = 1 in the rest of 2. Figure 7 is an example
mesh at refinement level 2 with 64 truncated cubes, and
the simulation is conducted on a similar mesh at refinement
level 5 with 32768 truncated cubes. The flow equation has a
Dirichlet boundary condition p = 1.0 at (x, y, z) € {0.0} x
[0,11% and p = 0.0 at (x, y, z) € {1.0} x [0, 1]?; the other
faces are set with a no-flow Neumann boundary condition.
There are no injection and extraction sources in the domain.

The velocity field u is approximated in the first-order full
approximation Arbogast-Tao space (AT;) defined in [8],
and the pressure is approximated by a discontinuous linear
polynomial. In Fig. 8, we show the pressure and velocity for
the flow problem.

For the transport equation, an entropy stabilized EG-
DS3 method is applied, i.e., we take X, (7,) = X?S(ﬁ)
in Eq. 87. The transport equation is set with an inflow
boundary condition ¢ = 1 on [';; and the initial condition
¢ = 0. The time step is set to be 6t = O0.lhpin =
0.00541266, where hpi, is the minimal cell diameter of
all the elements in the triangulation. The porosity ¢ = 1.
The simplified entropy stabilization is taken as Eq. 93. The
results are shown in Fig. 9 for time step m = 40, 100,
160, and 250. The left column shows the concentration
values with the maximum stabilization (4 = fmax),
and the right column shows the values with the entropy
stabilization (u;, = min(umax, fig)). We can observe that
the concentration values with the entropy stabilization show
sharper transport fronts and less numerical diffusion.

8.2 Example 1: Effect of capillary pressure

In this example, we show the effect of the capillary pressure
in a heterogeneous medium. The test is modified from that
given in [28] in that we use quadrilateral mesh elements
instead of rectangles.

This is a nondimensionalized model problem, so all
physical units are ignored in the following description. The
computational domain is Q = (0, 1.25) x (0, 0.875). It is
composed of layers of alternate permeabilities k = 0.5 and
k = 0.01, as shown in Fig. 10, and rock porosity ¢ = 0.2.
The fluid viscosities are u,, = 1 and w, = 0.45. The
relative permeabilities are set as in Eq. 40 with 8 = 2, the
residual saturations are Sy, = 0 and S,, = 0 (so S, = Sy)
and the capillary pressure is

—0.01

Vi

for the non-zero capillary pressure simulation; otherwise, it
is set to be zero. We ignore gravity in this test, and therefore,
the densities are not required.

There are no injection and extraction sources inside the
domain (g, = ¢, = 0). For the flow equation, we set a
Dirichlet boundary condition ®,, = 1 on the left-hand side
and ®,, = 0 on the right-hand side, and a no-flow Neumann
boundary condition on the top and bottom sides of the
domain. The inflow boundary for the saturation equation is
the left-hand side, and Sp = 1 there. The domain is initially
saturated with oil (the non-wetting phase), so So = 0.

Pe(Sw) = log (max(1.0, S, +107°))

(102)
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Fig.11 Wetting phase saturation profiles of Example 1 at time step m = 50, 125, 250, and 375 with zero (left) and nonzero (right) capillary pressure
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Fig. 12 Computational domain for example 2. The color indicate the
value of k~!, where the permeability K = kI. The minimal value of
k~!is 2 and the maximal is 100

The computational mesh 7 consists of randomly
distorted quadrilaterals, as shown in Fig. 10. The finite
element approximation spaces used are u, € ACy, &y, €
XFP, and S, € XP5. The time step is 6t = 0.001,
and we use NIPG for the entropy stabilization (o, =

1
1). The entropy function E(S,) = 555) and F'(S,) =

Sw [y (Sw)ug, and Apax = 0.2 and Ag = 1.

In Fig. 11, we compare the simulated wetting phase
saturation with and without capillary pressure at the same
time steps. We observe that the front of the saturation profile
with capillary pressure slows down and is more diffuse
compared with the zero capillary pressure case. Moreover,
the velocity is much greater near the interface between
different rock types due to the presence of heterogeneous
capillarity, as similar numerical tests in [5, 28, 33, 37] show.

Our results compare favorably to those in [28], where
rectangular elements were used. The test shows that grid
distortion does not degrade the accuracy of the results.

8.3 Example 2: Heterogeneous capillary pressure

In this second example of two-phase flow, we show
the difference between homogeneous and heterogeneous
capillary pressure in a heterogeneous medium. Similar
to the previous example, this is a nondimensionalized
model problem so that all physical units are omitted.
The computational domain is 2 = (0, 1)2. A random
permeability field is distributed over 2 as depicted in
Fig. 12. The rock porosity ¢, the fluid viscosities 1, and
Wn, the relative permeabilities, the residual saturations, and
initial saturation Sy are the same as in example 1, and
gravity is ignored here as well. The heterogeneous capillary

pressure is given in Eq. 102, and the homogeneous capillary
pressure is set as

pe(Sy) = —0.01log (max(l.O, Sw + 10_5)), (103)
which does not depend on the rock permeability.

There are no injection and extraction sources inside the
domain (g, = g, = 0). The water (wetting phase) injection
boundary is {0} x (0, 0.05), where ®,, = 1, and the
extraction boundary is {1} x (0.95, 1), where ®,, = 0. The
rest of the flow boundary is set with a no-flow Neumann
boundary condition. The inflow boundary is the injection
boundary, and Sp = 1 there.

The computational mesh has 100 x 100 distorted
quadrilateral elements (as in the coarse mesh of Fig. 13).
The time step, approximation spaces, entropy stabilization,
and the NIPG formulation are the same as example 1, except
Ag = L.5 in this example.

Figure 14 shows the profiles of the wetting phase
saturation with homogeneous and heterogeneous capillary
pressures at the same time steps. At time step m = 1000,
there are two low permeability regions that are not invaded
by the wetting phase if a homogeneous capillary pressure is
applied. On the other hand, with a heterogeneous capillary
pressure, the wetting phase invades these regions. At time
step m = 2000, the waterfront has almost reached the
extraction boundary. The homogeneous capillary pressure
case shows an unrecovered region near the bottom right of
the domain, while that region is much better saturated if the
heterogeneous capillary pressure is applied.

Being able to use quadrilateral meshes greatly aids the
setup of this problem. It allows us to accurately model
the shape of the low permeability inclusions. We maintain
logically rectangular mesh indexing, and we use many fewer
DoFs than triangles would provide.

Fig. 13 An example of a 8 x 8 randomly distorted quadrilateral mesh
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9 Summary and conclusions

We described recently developed mixed and direct serendip-
ity finite elements [3, 7]. These elements provide accurate
approximations on meshes of quadrilaterals and maintain
the minimal number of degrees of freedom (DoFs) needed to
maintain finite element conformity. Elements that approx-
imate to any order are available. We developed a new
enriched Galerkin method [42] on quadrilaterals based on
the direct serendipity finite elements.

We applied the new elements to computational simu-
lation of two-phase flow in porous media. We used the
Hoteit-Firoozabadi formulation [28], which separates the
system in terms of the advective and capillary velocities
u, and u. into an elliptic pressure equation for the flow
velocity u, and a hyperbolic saturation equation for S,,. A
standard IMPES solution procedure allows the two parts of
the system to be solved independently.

The pressure equation was discretized on quadrilateral
meshes using a mixed finite element approximation and
the accurate Arbogast-Correa spaces [3]. However, the
formulation requires the construction of the divergence of
the capillary flux. We provided a novel implementation that
does not break down when the system degenerates (i.e., one
of the saturations tends to the residual value).

The saturation equation was also discretized accurately
on quadrilateral meshes using the new enriched Galerkin
method employing the direct serendipity spaces of the
current authors [7]. Being hyperbolic, the system needs
to be stabilized, and we used the entropy stabilization
procedure of Guermond, Pasquetti, and Popov [26], adapted
to our specific equation.

Extension to three space dimensions is straightforward,
up to the definition of the minimal DoF finite element
spaces. The mixed spaces have been defined in [8, 21],
and the direct serendipity spaces were defined in [43] for
truncated cubes.

Numerical results showed that accurate results are
obtained by our numerical method, in both two and three
dimensions. The ability to use quadrilateral and hexahedral
meshes greatly increase one’s ability to set up appropriate
meshes for the problem to be solved. Our method uses
a minimal number of DoFs, and so is quite efficient.
The low number of DoFs is due to two sources. First,
quadrilateral and hexahedral meshes use far fewer elements
than ones based on triangles or simplices. Second, we
use minimal DoF finite element spaces, which greatly
reduce the number of DoFs compared with, say ABF or
Devloo et al. mixed finite element spaces [11, 16, 41]
and standard enriched Galerkin methods based on tensor
product polynomials. Moreover, the method is efficient
because, in many problems, we can maintain a logically
rectangular mesh indexing.

Our numerical results also showed that our novel
construction of the divergence of the capillary flux captures
well the effects of capillary pressure.
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