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AbstractWe describe a novel and general framework for solving advection-diffusion
equations using finite volume weighted essentially non oscillatory (WENO) tech-
niques on general computational meshes. Such techniques are able to handle advec-
tive and (degenerate) diffusive behavior, even when the solution develops shocks
or steep fronts. We discuss a robust procedure for producing accurate stencil poly-
nomial approximations and a recently developed multilevel WENO (ML-WENO)
reconstruction. It combines stencil polynomials of various degrees (e.g., more than
two degrees and including constant polynomials) defined on any set of stencils
(e.g., not hierarchically arranged). The nonlinear weighting biases the reconstruction
away from both inaccurate oscillatory polynomials crossing a shock or steep front
and smooth polynomials of low degree, thereby selecting the smooth polynomial(s)
of maximal degree of approximation. We apply these ideas to develop a prelimi-
nary finite volume scheme for solving two-phase flow in porous media modeled by
Richards equation. Numerical tests of rainwater infiltration show the advantages of
using higher order finite volume methods and multilevel WENO reconstructions.

1 Introduction

Discontinuous Galerkin (DG) and finite volume (FV) methods are popular choices
for the approximation of advection-diffusion equations

ut + ∇ · [ f (u) − D(u)∇u] = q(u) (1)

for the unknown u(x, t), especially when the equation is advection dominated (i.e.,
D is small). The pure advection equation (i.e., D = 0) often has solutions exhibiting
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discontinuities. Numerical methods must carefully approximate the solution on the
interfaces between mesh cells or elements. DG places many degrees of freedom
(DoFs) inside eachmesh element E to understand the solution behavior on ∂E , while
FV places one DoF inside each mesh element, and looks outside E to determine the
behavior of the solution on ∂E .

FV methods have many advantages; we mention three. First, they use only one
degree of freedom per mesh element in any space dimension and for any degree
of approximation. Second, they maximize the mesh resolution. That is, compared
to finite element and DG methods using a similar number of DoFs, the mesh is
significantly finer for FV methods. This is important is some applications, such as
porous media, where permeability and porosity are generally taken to be constant on
each mesh element. Third, the mesh needs no special properties.

In this paper, we discuss a FV scheme approximating (1) involving a recently
introduced weighted essentially non-oscillatory (WENO) technique [1]. We then
give a preliminary application to Richards equation, which arises in the field of
hydrology.

2 The Finite Volume Framework

Let Th be a quasi-uniform computational mesh of elements of maximal diameter
h > 0 over the domain Ω ⊂ Rd . We will take d = 2 in this paper, but the ideas
extend to higher dimensions. The average of u(x, t) over the mesh element E ∈ Th is

ūE (t) =
1
|E |

∫
E

u(x, t) dx , (2)

where |E | is the area of E . The differential equation (1) can be averaged over E as
well. After applying the Divergence Theorem, we find

ūE ,t +
1
|E |

∫
∂E

(
f (u) − D∇u

)
· νE dS(x) =

1
|E |

∫
E

q(u) dx . (3)

A numerical flux function for the advective term is needed both to stabilize com-
putations by adding numerical diffusion and to account for potential discontinuities
in the solution. We use the Lax-Friedrichs numerical flux

f̂E (u−,u+) =
1
2
[
( f (u−) + f (u+)) · νE − αLF(u+ − u−)

]
, (4)

where u− and u+ are left and right limits of the solution at the interface ∂E and
αLF = max

u

��∂ f /∂u
�� is the maximum wave speed. Thus

ūE ,t +
1
|E |

∫
∂E

[
f̂E (u−,u+) − D(u)∇u · νE

]
dS(x) =

1
|E |

∫
E

q(u) dx . (5)
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We approximate time evolution using a standard Runge-Kutta method at time
levels 0 = t0 < t1 < t2 < · · · , so that ūn

E ≈ ūE (tn) for each n > 0. We also need to
approximate u±(x) and D(u)∇u · νE0 (x) on ∂E0 for each E0 ∈ Th , given only the ūE .

3 Construction of Stencil Polynomials

Given a mesh stencil S = {Ej ∈ Th, some j} of contiguous mesh elements, we can
define its stencil polynomial

P(x) =
∑
α<r

cα
(x − xS

hS

)α
(6)

by matching the averages over each E ∈ S, i.e.,

1
|E |

∫
E

P(x) dx = ūE ⇐⇒ Ac = u , (7)

for some M × N matrix A. This generally requires least-squares fitting [5], since the
number of polynomial coefficients N is usually not the number of stencil elements M .

We find the SVD decomposition and the singular values

A = UΣVT , s1 ≥ s2 ≥ · · · ≥ sm . (8)

If the matrix AT A is nonsingular (m = M), we can solve for the polynomial coeffi-
cients c = (AT A)−1 ATu = VΣ−1UTu. However, one actually selects a target element
E0 ∈ S and constrains c to match (7) on E0 [5]. In [1], it was shown how to determine
when one obtains a reliable approximation.

Theorem 1 There is some moderate constant C ≥ 0 such that for x ∈ E0,

|Dα(u(x) − P(x))| ≤ Chr−|α | ∀ |α | ≤ r , (9)

provided the matrix AT A is well conditioned and the mesh is quasiuniform.

If the condition number (s1/sM )2 is much larger than one (say greater than 108),
we should reject the stencil polynomial. We could then try to add elements to the
stencil, but in dimensions greater than one, it is not clear which elements should be
added. Moreover, a larger stencil is undesirable, since it is more likely to cross a
shock. An alternative is to decrease the polynomial degree r − 1 and try again [1].
This option is practical in multidimensions, and the algorithm will terminate at least
with r = 1 (i.e., a constant polynomial). In other words, we fix the stencil and find
the best polynomial approximation it supports.

We must also reliably detect a shock or steep front. For polynomial P(x) targeting
element E0, its smoothness indicator is σP [4]. It satisfies σP = D0h2

0 + O(h
3) if

u is smooth on the stencil (for some constant D0 ≥ 0), and is O(1) if u has a jump
discontinuity on the stencil.
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4 ML-WENO Reconstructions

The general philosophy of ENO and WENO reconstructions is that they should
involve approximations that do not cross a shock. They do so by considering many
stencil polynomials P` of degree r` −1 for target element E0 ∈ Th and taking a linear
combination

R(x) =
∑̀

ω̃`P`(x) . (10)

Most current WENO techniques are unsuitable for general approximation in mul-
tidimensions. They require polynomials of only two degrees, or stencils arranged
hierarchically.Moreover, they generally require non-constant polynomials. An excep-
tion is the multilevel WENO (ML-WENO) reconstruction presented in [1]. Choose
linear weights ω` > 0 (such as 1, although 10−4 is perhaps better for weighting
constant polynomials), and then define the nonlinear weights

ω̃` =
ω̂`∑
k ω̂k

where ω̂` =
ω`

(σP` + ε0h2)r`
. (11)

Here ε0 > 0 is a small parameter (such as 10−2 or 10−6). This weighting selects the
stencil polynomials of highest order of accuracy that do not cross a shock.

Theorem 2 There is some C > 0 such that for all x ∈ E0 (the target element),

|u(x) − R(x)| ≤ Chrmax , (12)

where rmax = max
`
{r` : u is smooth on the `th stencil}.

Returning to (5), we use the reconstruction R to evaluate u± on the boundary of the
target element E0. We also evaluate the normal derivative D(u)∇u · νE by evaluating
R on the line normal to an edge of E0, interpolating the results, and differentiating
the resulting polynomial, as was discussed in [2].

5 Preliminary Application to Richards Equation

As a preliminary investigation of the use of ML-WENO in solving problems in
porous media, we consider solving a rainwater infiltration problem. The two-phase
air-water system in hydrology is generally governed by Richards equation [3]. The
system is modeled assuming that the air phase is infinitely mobile and connected
to the surface, so the air pressure is fixed at atmospheric pressure, taken as zero.
The unknown solution then consists of only the water saturation s, pressure pw, and
velocity vw. The equations can be written as
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φst + ∇ · vw = q(s) , (13)
vw = −λw(s)K (∇pw − ρw g) , (14)

pc(s) = −pw ≤ 0 , (15)

where φ is the porosity, K is the permeability, λw is the relative mobility, ρw is the
water density, g is the gravity vector, pc(s) is the (macroscopic) capillary pressure
function, and q models the external wells appearing in the domain.

We can simplify the system by defining the Kirchhoff Transformation

D(s) = −
∫ s

0
λw(S)p′c(S) dS , (16)

which implies that

∇D(s) = −λw(s)∇pc(s) = λw(s)∇pw . (17)

We eliminate pw = −pc(s) and vw = −K∇D(s) + ρw λw(s)K g to obtain the single
equation

φst − ∇ ·
(
K∇D(s)

)
+ ∇ ·

(
ρw λw(s)K g

)
= q(s) . (18)

In finite volume form over the mesh element E , the equation is

φs̄E ,t −
1
|E |

∫
∂E

K∇D(s) · ν dS(x)

+
1
|E |

∫
∂E

ρw λw(s)K g · ν dS(x) =
1
|E |

∫
E

q(s) dx .
(19)

The terms on the left hand side model accumulative, (degenerate) diffusive, and
advective processes. The third term requires a numerical flux (4).

5.1 Numerical Implementation

We assume a single rock type and a constant porosity, so s is smooth but may exhibit
steep fronts. We present a simple algorithm based on advancing the saturation
through time.

Time is advanced from tn to tn+1 by an explicit Runge-Kutta method with `max
stages. Set s̄n,0 = s̄n. For each stage ` = 0,1, . . . , `max − 1, advancement of s̄n,` to
s̄n,`+1 can be represented as

s̄n,`
ML-WENO
−−−−−−−−−−→ Rn,` point evaluation

−−−−−−−−−−−−−−→ (sn,`, pn,`w ,vn,`w )
transport
−−−−−−−−→ s̄n,`+1 . (20)

The first step in (20) is to use ML-WENO to reconstruct Rn,` ≈ s̄n,` over each
element of the mesh. The second step uses the reconstructions to find the required
point evaluations of sn,` , pn,`w , and vn,`w needed in the approximation of (19). The
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third step results in the new value of s̄n,`+1 after solving the finite volume transport
equation (19). Finally, after all Runge-Kutta stages, we set s̄n+1 = s̄n,`max .

We have chosen to reconstruct the saturation. However, we should expect that
reconstruction of pw would be more accurate than reconstruction of s, since in
general the variable pw is smoother than s. If we did so, we would need to take the
finite volume unknowns to be p̄nw,E . The advancement of p̄n,`w to p̄n,`+1

w would then
require an additional step, which would follow the procedure

p̄n,`w
ML-WENO
−−−−−−−−−−→ Rn,` point evaluation

−−−−−−−−−−−−−−→ (sn,`, pn,`w ,vn,`w )

transport
−−−−−−−−→ s̄n,`+1 transform

−−−−−−−−→ p̄n,`+1
w .

(21)

The approximation of the differential equation (19) would still lead to transport of
s̄n,`+1 on each element, and these would need to be transformed into values for
p̄n,`+1
w on each element. It is an open problem as to how to effectively define this

transformation while maintaining accuracy.

5.2 Numerical Test of Water Infiltration

We consider a 100m × 10m groundwater domain with continuous infiltration of
water on a portion of the top boundary, as shown in Figure 1. The initial saturation
is otherwise in gravitational equilibrium. The figure also shows the heterogeneous
permeability,which varies fromabout 0.1 to 1Darcy.Weuse vanGenuchten capillary
pressure and water mobility curves as shown in Figure 2.
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Fig. 1 The groundwater domain, showing the initial saturation s(x, 0) and absolute permeabilityK .
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Fig. 2 The van Genuchten capillary pressure pc (in MKS units) and water mobility curves λw.
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We impose a 100 × 50 mesh of quadrilaterals over the domain (see Figure 1).
We use the explicit forward Euler time stepping method, although the third order
explicit SSP Runge-Kutta method gives similar results. The time step is taken to be
∆t = 0.001 days, and we compute 6000 steps (6 days).

We show the results of using low order methods in Figure 3. Displayed is the
saturation at times 0.2, 1, 2, 4, and 6 days. The ML-WENO(1) method simply uses a
constant polynomial over each target element as the reconstruction, and amounts to
a standard first order accurate upwind finite volume method. The ML-WENO(2,1)
method combines a linear polynomial defined over a stencil of five elements sharing
an edge with the target element, and a constant polynomial; that is, it is second order
in smooth regions but drops to first order near a steep front. These two results are
fairly similar. Not shown are the results using ML-WENO(3,1), which are similar to
the other two. The quadratic polynomial in ML-WENO(3,1) is defined on a stencil
of nine elements that share a vertex with the target element. These three methods all
drop to first order near the steep front, which limits the accuracy of the solution.

Day 0.2 Day 0.2

Day 1 Day 1

Day 2 Day 2

Day 4 Day 4

Day 6

ML-WENO(1)

Day 6

ML-WENO(2,1)

Fig. 3 Saturation computed using the ML-WENO(1) and ML-WENO(2,1) reconstructions.

The results of using third order methods is shown in Figure 4. The ML-
WENO(3,2) and ML-WENO(3,2,1) results are similar to each other, but differ sig-
nificantly from the low order methods. The third order methods show a sharper front
and a faster infiltration of water. Near the steep front, the ML-WENO(3,2) method
drops to a linear approximation, while the three level, ML-WENO(3,2,1) method
usually drops to a linear approximation but sometimes to a constant approxima-
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Fig. 4 Saturation computed using the ML-WENO(3,2) and ML-WENO(3,2,1) reconstructions.

tion (the relative linear weight for the constant polynomial is taken to be 10−4 for
ML-WENO(3,2,1)). Overall, ML-WENO(3,2) gives a bit sharper front, but it also
displays some undershoot, as can be seen at 0.2 and 1 day. Adding the constant
polynomials into the reconstructions alleviates this problem.
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