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A RANDOMIZED MAXIMUM A POSTERIORI METHOD FOR
POSTERIOR SAMPLING OF HIGH DIMENSIONAL

NONLINEAR BAYESIAN INVERSE PROBLEMS∗
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Abstract. We present a randomized maximum a posteriori (rMAP) method for generating
approximate samples of posteriors in high dimensional Bayesian inverse problems governed by large-
scale forward problems. We derive the rMAP approach by (1) casting the problem of computing the
MAP point as a stochastic optimization problem; (2) interchanging optimization and expectation;
and (3) approximating the expectation with a Monte Carlo method. For a specific randomized data
and prior mean, rMAP reduces to the randomized maximum likelihood (RML) approach. It can
also be viewed as an iterative stochastic Newton method. An analysis of the convergence of the
rMAP samples is carried out for both linear and nonlinear inverse problems. Each rMAP sample
requires solution of a PDE-constrained optimization problem; to solve these problems, we employ a
state-of-the-art trust region inexact Newton conjugate gradient method with sensitivity-based warm
starts. An approximate Metropolization approach is presented to reduce the bias in rMAP samples.
Various numerical methods will be presented to demonstrate the potential of the rMAP approach in
posterior sampling of nonlinear Bayesian inverse problems in high dimensions.
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1. Introduction. We consider a class of inverse problems that seek to determine
a distributed parameter in a partial differential equation (PDE) model, from indirect
observations of outputs of the model. We adopt the framework of Bayesian inference,
which accounts for uncertainties in observations, the map from parameters to observ-
ables via solution of the forward model, and prior information on the parameters. In
particular, we seek a statistical description of all possible (sets of) parameters that
conform to the available prior knowledge and at the same time are consistent with
the observations via the parameter-to-observable map. The solution of a Bayesian
inverse problem is the posterior measure, which encodes the degree of confidence on
each set of parameters as the solution to the inverse problem under consideration.

Mathematically, the posterior is a surface in high dimensional parameter space.
Even when the prior and noise probability distributions are Gaussian, the poste-
rior need not be due to the nonlinearity of the parameter-to-observable map. For
large-scale inverse problems, exploring non-Gaussian posteriors in high dimensions
(to compute statistics such as the mean, covariance, and/or higher moments) is ex-
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rMAP SAMPLING METHOD FOR BAYESIAN INVERSE PROBLEMS A143

tremely challenging. The usual method of choice for computing statistics is Markov
chain Monte Carlo (MCMC) [20, 32, 37, 43, 53, 54, 55], which judiciously samples
the posterior distribution, so that sample statistics can be used to approximate the
exact distributions. The problem, however, is that standard MCMC methods often
require millions of samples for convergence; since each sample requires an evaluation
of the parameter-to-observable map, this entails millions of expensive forward PDE
simulations—a prohibitive proposition. On one hand, with the rapid development of
parallel computing, parallel MCMC methods [6, 16, 58, 61, 62] are studied to accel-
erate the computation. While parallelization allows MCMC algorithms to produce
more samples in less time with multiple processors, such accelerations typically do
not improve the mixing and convergence of MCMC algorithms. More sophisticated
MCMC methods that exploit the gradient and higher derivatives of the log posterior
(and hence the parameter-to-observable map) [2, 13, 15, 21, 22, 25, 27, 42, 44, 50] can,
on the other hand, improve the mixing, acceptance rate, and convergence of MCMC.
Several of these methods exploit local curvature in parameter space as captured by
the Hessian operator of the negative logarithm of the posterior. This requires ma-
nipulating the Hessian of the data misfit functional (i.e., the negative log likelihood).
The stochastic Newton method (SN) [13, 42, 50] makes these Hessian manipulations
tractable by invoking a low rank approximation, motivated by the theoretically estab-
lished or experimentally observed compactness of this operator for many large-scale
ill-posed inverse problems.

However, despite its successful application to million-parameter problems gov-
erned by expensive-to-solve PDEs [9, 36], two barriers exist that prevent further
scaling of SN to challenging problems. First, even computing low rank Hessian in-
formation for every sample in parameter space can be prohibitive. Second, when the
curvature of the negative log posterior changes rapidly, SN’s local Gaussian approxi-
mation may not provide a good enough model for the posterior, and hence the MCMC
proposal may not be effective. This may result in low acceptance rates and excessive
numbers of forward PDE solves.

In this paper, we consider an optimization boosted sampling framework, the
randomized maximum a posteriori (rMAP) method that is inspired by the random-
ized maximum likelihood (RML) [39, 48] and the randomize-then-optimize (RTO)
approaches [1]. Through computing each sample by PDE-constrained optimization
[3, 4, 24, 33], it can explore the parameter space more efficiently. It can also be viewed
as a nonlinear SN method that executes multiple Newton iterations in every MCMC
step to generate a better proposal and to allow an improved acceptance rate. On the
other hand, solving optimization problems is expensive, and hence we discuss several
improvements and extensions to make the rMAP method more applicable towards
solving real problems.

We present our discussions in the following order. Section 2 introduces a statisti-
cal inversion setting based on the Bayesian framework in infinite dimensions. The core
of the paper is section 3. In this section, we first convert the maximum a posteriori
(MAP) problem into a stochastic programming problem, which is then solved using
sample average approximation. This rMAP method rediscovers the RML method
as a special case. Results for convergence of the rMAP ensemble using stochastic
programming theory are presented, and the extension of the rMAP to infinite dimen-
sional problems is discussed at length. We also show that rMAP is a generalization
of SN—for linear inverse problems, they become identical. It is worth noting that for
nonlinear inverse problems, rMAP samples are not the actual but rather the approxi-
mate samples of the underlying posterior distribution. Therefore, in section 4 we also
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A144 KAINAN WANG, TAN BUI-THANH, AND OMAR GHATTAS

discuss an approximate Metropolization technique to reduce the bias between sample
approximation and the true posterior distribution. We discuss in section 5 a finite
element discretization of the infinite dimensional Bayes inverse problem. We also de-
scribe how to solve the optimization problem efficiently at each sampling step. In
particular, we present a sensitivity approach to obtain “good” initial guesses for fur-
ther accelerating the optimization procedure. In section 6, various numerical results
showing the efficiency of proposed strategies compared to state-of-the-art alternatives
are presented for 1D analytical problems as well as 2D inverse problems governed by
the Helmholtz equation. Finally, we conclude the paper in section 7.

2. Infinite dimensional Bayesian inverse problem setting. We consider
the following generic forward model:

B (u,w) = 0 in Ω,

which, for example, can be PDEs modeling the physical problem under consideration.
The forward problem involves solving for the forward state w given a modeling of the
distributed parameter u. In the inverse problem, the task is to reconstruct u given
some available observations of w on parts of the domain Ω. One widely accepted
model for the relationship between model parameters and observations is the additive
noise model,

(1) d = G (u) + η,

with d = [d1, . . . , dK ]T denoting all observed data, G := [w (x1) , . . . , w (xK)]T denot-
ing the parameter-to-observable (or forward) map, i.e., the map from the distributed
parameter u to the observables w (xi) at locations {xj}, j = 1, 2, . . . ,K, and noise be-
ing represented by η, a random vector normally distributed by N (0,L) with bounded
covariance matrix L. For simplicity, we take L = σ2I, where I is the identity matrix
of appropriate dimension. For notational convenience, throughout the paper we use
boldface italic letters for vectors and matrices and Roman letters for infinite dimen-
sional counterparts. For example, u denotes a function in L2 (Ω), while u represents
its discrete counterpart.

The inverse problem can be formulated as choosing model parameters that mini-
mize the discrepancy between model prediction and observations:

min
u

Φ (u,d) :=
1
2
|d− G (u)|2L(2)

subject to the forward problem

(3) B (u,w) = 0,

where |·|L :=
∣∣∣L− 1

2 ·
∣∣∣ denotes the weighted Euclidean norm induced by the inner

product in RK . This optimization problem, however, is ill-posed. An intuitive reason
is that the dimension of vector of observations d is often much smaller than that
of the parameter u (typically infinite before discretization), and hence d provides
limited information about the distributed parameter u. As a result, the null space of
the Jacobian of the parameter-to-observable map F is nonempty. In particular, for a
class of inverse problems, we have shown that the Gauss–Newton approximation of
the Hessian (which is the product of the Jacobian transpose and the Jacobian, and is
also equal to the full Hessian of the misfit Φ evaluated at the optimal parameter in the
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rMAP SAMPLING METHOD FOR BAYESIAN INVERSE PROBLEMS A145

zero residual case, i.e., when the data is noise free) is a compact operator [10, 11, 12],
and hence its range space is effectively finite dimensional.

In this paper, we choose to tackle the ill-posedness using a Bayesian framework
[17, 26, 37, 40, 41, 51, 59]. We seek a statistical description of all possible parameter
fields u that conform to some prior knowledge and at the same time are consistent
with the observations. The Bayesian approach accomplishes this through a statistical
inference framework that incorporates uncertainties in the observations, the forward
map G, and the prior information. To begin, we postulate the prior as a Gaussian
measure µ := N (u0, C) with mean function u0 and covariance operator C on u in
L2 (Ω) , where

C := α−1 (I −∆)−s =: α−1A−s, α > 0,

with the domain of definition of A defined as

D (A) :=
{
u ∈ H2 (Ω) :

∂u

∂n
= 0 on ∂Ω

}
.

Here, H2 (Ω) is the usual Sobolev space. Assume that the mean function u0 resides
in the Cameron–Martin space of µ; then one can show (see, e.g., [59]) that the prior
measure µ is well-defined when s > d/2 (d is the spatial dimension), and in this case,
any realization from the prior distribution µ almost surely resides in the Hölder space
X := C0,β (Ω) with 0 < β < s/2. That is, µ (X) = 1, and the Bayesian posterior
measure ν satisfies the Radon–Nikodym derivative

(4)
∂ν

∂µ
(u|d) ∝ exp (−Φ (u,d))

if G is a continuous map from X to RK .
The MAP point (see, e.g., [23, 59] for the definition of the MAP point in infinite

dimensional settings) is given by

(5) uMAP := arg min
u
J (u;u0,d) :=

1
2
|d− G (u)|2L +

1
2
‖u− u0‖2C ,

where ‖·‖C :=
∥∥∥C− 1

2 ·
∥∥∥ denotes the weighted L2 (Ω) norm induced by the L2 (Ω) inner

product 〈·, ·〉. We shall also use 〈·, ·〉 to denote the duality pairing on L2 (Ω).
It should be pointed out that the last term in (5) can be considered as a prior-

inspired regularization; the MAP point is thus a solution to the corresponding de-
terministic inverse problem. However, the Bayesian approach goes well beyond the
deterministic solution to provide a complete statistical description of the inverse so-
lution: the posterior encodes the degree of confidence (probability) in the estimate of
all possible parameter fields.

In addition to the MAP point, we also wish to interrogate the posterior distri-
bution for statistics such as conditional mean and interval estimates. This requires
sampling of the distribution, where empirical statistics from produced samples can
effectively approximate those of the posterior. Popular sampling methods usually suf-
fer from problems such as the curse of dimensionality. On the other hand, successful
computational methods for MAP estimation have been studied extensively. These
facts motivate us to explore sampling methods that are facilitated by MAP estimates,
which we discuss in detail below.
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A146 KAINAN WANG, TAN BUI-THANH, AND OMAR GHATTAS

3. A randomized maximum a posteriori approach. In this section we
present an approach, which we call the randomized maximum a posteriori (rMAP)
method, to compute approximate samples for the posterior distribution. The idea is
to first randomize the cost function to cast the MAP statement (5) into a stochas-
tic programming problem, which is then solved using the Monte Carlo method (also
known as the sample average approximation [57]). The resulting rMAP method re-
sembles the RML developed in [39, 48] as a special case. We therefore rediscover the
RML method from a completely new, i.e., stochastic programing, viewpoint. It is
this view that allows us to provide new theoretical results on the RML approach for
nonlinear inverse problems that were previously not available. Indeed, the fact that
RML samples are exact samples of the posterior for linear inverse problems currently
seems to be the only available result on the RML method [1, 39, 48]. We shall also
show that the rMAP method (which from now on will be used interchangeably with
the RML method) can be considered as a means to incorporate uncertainty into the
solution of deterministic inverse approaches.

To begin, let us consider finite dimensional parameter space1 for simplicity of the
exposition, i.e., u,u0 ∈ RN . The posterior measure ν in this case has the density
πpost with respect to the Lebesgue measure:

πpost ∝ πlike × πprior,

where the likelihood is given by πlike ∝ exp (−Φ (u,d)) = exp
(
− 1

2 |d− G (u)|2L
)

and

the prior by πprior ∝ exp
(
− 1

2 |u− u0|2C
)

. The MAP problem (5) becomes

(6) uMAP := arg min
u
J (u;u0,d) :=

1
2
|d− G (u)|2L +

1
2
|u− u0|2C ,

where C ∈ RN×N is the covariance matrix in this case. Throughout this paper, we
denote by E the expectation. We now randomize the cost function and hence the
MAP problem (6).

Lemma 3.1. Let θ ∈ RK and ε ∈ RN be two independent random vectors dis-
tributed by πθ and πε with zero mean, i.e., Eθ [θ] = 0 and Eε [ε] = 0. The following
result holds:

J (u;u0,d) = Eθ×ε [J r (u;u0,d,θ, ε)]− Eθ
[
θTθ

]
− Eε

[
εTε

]
,

where
J r (u;u0,d,θ, ε) =

1
2
|d + θ − G (u)|2L +

1
2
|u− u0 − ε|2C ,

with Eθ×ε denoting the expectation with respect to the product measure πθ×πε induced
by (θ, ε). Consequently,

(7) uMAP := arg min
u
J (u;u0,d) = arg min

u
Eθ×ε [J r (u;u0,d,θ, ε)] .

Proof. Since θ and ε are independent, we have

Eθ×ε [J r (u;u0,d,θ, ε)] =
1
2

Eθ
[
|d + θ − G (u)|2L

]
+

1
2

Eε
[
|u− u0 − ε|2C

]
= J (u;u0,d)+Eθ

[
θTL−1 (d− G (u))

]
−Eε

[
εTC−1 (u− u0)

]
+Eθ

[
θTθ

]
+Eε

[
εTε

]
,

1Finite dimensionality could result from a discretization of distributed parameters (see, e.g., [8]
for a constructive finite element discretization).
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rMAP SAMPLING METHOD FOR BAYESIAN INVERSE PROBLEMS A147

which proves the first assertion since Eθ [θ] = 0 and Eε [ε] = 0. The second assertion
is obvious since Eθ

[
θTθ

]
and Eε

[
εTε

]
are constants independent of u.

Lemma 3.1, particularly identity (7), shows that the MAP point can be considered
as the solution of the following stochastic programming problem:

(8) min
u

Eθ×ε [J r (u;u0,d,θ, ε)] = Eθ×ε
[
min
u
J r (u;u0,d,θ, ε)

]
,

where we have interchanged the order of minimization and expectation.2 At this
moment, (8) holds for finite dimensional cases, and whether it is also true for infinite
dimensional settings is unknown. Our next step is to approximate the expectation
on the right-hand side of (8) using the Monte Carlo approach (also known as the
sample average approximation [57]). In particular, with n independent and identically
distributed (i.i.d.) samples (θj , εj) from the product measure πθ × πε, we have

(9) min
u

Eθ×ε [J r (u;u0,d,θ, ε)] ≈
1
n

n∑
j=1

min
u
J r (u;u0,d,θj , εj) .

Let us define

(10) uj := arg min
u
J r (u;u0,d,θj , εj) =

1
2
|d + θj − G (u)|2L +

1
2
|u− u0 − εj |2C ,

and we are in a position to define the rMAP method in Algorithm 1. As can be
seen, the observation vector d and the prior mean u0 are randomized in the first two
steps, which are then followed by solving a randomized MAP problem in the third
step. Finally, we take each perturbed MAP point uj as an approximate sample of the
posterior πpost.

Algorithm 1 The rMAP algorithm.
Input: Choose the sample size n

1: for j = 1, . . . , n do
2: Draw εj ∼ πε
3: Draw θj ∼ πθ
4: Compute rMAP sample uj via (10)
5: end for

Throughout the paper, we choose the product measure to be πθ×πε = N (0,L)×
N (0, C), and in this case the rMAP approach becomes the RML method [1, 38, 49].
That is, the RML method is a special case of our framework. In other words, by
first casting the MAP computation into a stochastic programming problem and then
solving it using the sample average approximation, we have arrived at a constructive
derivation of the RML method. One can show that the RML samples are exactly
those of the posterior when the forward map G (u) is linear [1, 38, 49]. This seems to
be the only theoretical result currently available for RML. Our stochastic program-
ming viewpoint shows that the RML method is nothing more than a sample average
approximation to the stochastic optimization problem (8), whose solution is the MAP
point. However, the sample average does not converge to the MAP point, as we now
show. Let us define

(11) S (u0,d,θ, ε) := arg min
u
J r (u;u0,d,θ, ε) ;

2The conditions under which the interchange is valid can be consulted in [56, Theorem 14.60].
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that is, S (u0,d,θ, ε) is the “optimizer operator.” Clearly, this operator maps a pair
(θj , εj) to an RML sample

uj := arg min
u
J r (u;u0,d,θj , εj) = S (u0,d,θj , εj) .

Proposition 3.2. Assume S (u0,d,θ, ε) is measurable with respect to the prod-
uct measure πθ × πε; then

1
n

n∑
j=1

uj
a.s.→ Eθ×ε [S (u0,d,θ, ε)] .

Proof. The result is a simple consequence of the law of large numbers.

Note that setting θ = 0 and ε = 0 in (11) reveals that S (u0,d,0,0) is the
solution of a deterministic inverse problem with prior-inspired regularization. If we
view θ and ε as the uncertainty in data d and the baseline (the prior mean) parameter
u0, respectively, the rMAP method can be considered as a Monte Carlo approach to
propagate the uncertainty from d and u0 to that of the inverse solution.

Corollary 3.3. When the forward map G (u) is linear, the following holds:

1
n

n∑
j=1

uj
a.s.→ uMAP,

and each rMAP sample uj is in fact the actual sample of the posterior.

We now extend the rMAP method to posterior distribution in function spaces. In
this case, C is a covariance operator from L2 (Ω) to L2 (Ω), RK 3 θ ∼ N (0,L), and
L2 (Ω) 3 ε ∼ N (0, C). For notational convenience, let us define

d̂ := d + θ and û := u0 + ε.

The randomized MAP problem is now defined as

ûMAP := arg min
u
J r
(
u; û, d̂

)
:= arg min

u

1
2

∣∣∣d̂− G (u)
∣∣∣2
L

+
1
2
‖u‖2C + 〈u, û〉C .

(12)

Note that the last two terms in (12) are not the same as the last term in (5).
The reason is that the Cameron–Martin space of µ has zero measure [30, 52], and
hence û almost surely does not belong to this space. As a result, the term 1

2 ‖û‖
2
C is

almost surely infinite, which should be removed as done in (12). On the other hand,
a solution to (5) or (12) is necessary in the Cameron–Martin space since, otherwise,
the term ‖u‖2C is infinite. The existence of such a solution has been shown in [59], and
hence (12) is meaningful. Furthermore, the last term 〈u, û〉C should be understood in
the limit sense (see [52, 59]) since û ∈ L2 (Ω) and the Cameron–Martin space is dense
in L2 (Ω). Now we are in a position to analyze the rMAP samples in function spaces.

Lemma 3.4. If the forward map G (u) is linear in u, then ûMAP is distributed by
the posterior measure (4).
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Proof. To begin, assume G (u) = Bu. Taking the first variation of J r
(
u; û, d̂

)
with respect to u in the direction ũ (in the Cameron–Martin space) gives〈

∇J
(
u; û, d̂

)
, ũ
〉

=
〈
Lu−B∗L−1d̂− C−1û, ũ

〉
,

where B∗ : RK → L2 (Ω) is the adjoint of B, and we have defined

L := B∗L−1B + C−1.

Again, the term
〈
C−1û, ũ

〉
should be understood in the limit sense (see [52, 59]). By

definition, ûMAP is a solution of
〈
∇J

(
u; û, d̂

)
, ũ
〉

= 0 ∀ũ. Consequently, we have

(13) ûMAP = L−1
(
B∗L−1d̂ + C−1û

)
.

Since both û and d̂ are Gaussian, ûMAP is also a Gaussian random function. Assume
that d̂ and û are independent; after some simple algebra and manipulation the mean
of ûMAP can be written as

(14) E
[
ûMAP] = L−1 (B∗L−1d + C−1u0

)
,

which is exactly the MAP point in (5). Furthermore, the covariance operator of ûMAP

reads

(15) E
[(
ûMAP − uMAP)⊗ (ûMAP − uMAP)] = L−1.

On the other hand, using conditional Gaussian measures [59], one can show that
the posterior measure ν is a Gaussian with mean function

(16) ū = u0 + CB∗ (L + BCB∗)−1 (d−Bu0)

and covariance operator

(17) Cpost = C − CB∗ (L + BCB∗) BC.

The fact that (14) and (15) are identical to (16) and (17), respectively, follows directly
from the “matrix” inversion lemma [28].

3.1. rMAP as the SN method for linear inverse problems. We begin by
extending the finite dimensional SN method in [42] to infinite dimensions. To that
end, we define the SN proposal in function space as

(18) vSN = u−
[
∇2J (u;u0,d)

]−1∇J (u;u0,d) +N
(

0,
[
∇2J (u;u0,d)

]−1
)
,

where, from the definition of J in (5), we define

∇J (u;u0,d) = ∇G∗ (u) L−1 [G (u)− d] + C−1 (u− u0) ,(19a)

∇2J (u;u0,d) = ∇ [∇G∗ (u)] L−1 [G (u)− d] +∇G∗ (u) L−1∇G (u) + C−1.(19b)

Clearly, the infinite dimensional SN proposal reduces to that proposed in [42] for finite
dimensional problems. Here comes the relation between rMAP and SN methods.
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Lemma 3.5. The rMAP approach is identical to the SN method for linear inverse
problems.

Proof. Since the forward map is linear, i.e., G (u) = Bu, the posterior is a Gaus-
sian measure as discussed above. A simple manipulation gives

∇J (u;u0,d) = Lu−B∗L−1d− C−1u0 and ∇2J (u;u0,d) = B∗L−1B + C−1.

Consequently,

(20) vSN = uMAP +N
(
0,L−1) ,

where uMAP = L−1
(
B∗L−1d + C−1u0

)
as in the proof of Lemma 3.4. Due to the

linearity of G, we need only use one Newton iteration to obtain ûMAP, and it is
exactly given by (13).

In order to show the equivalence between rMAP and SN, we need to prove that
vSN and ûMAP come from the same distribution. But this is obvious by inspection:
the mean function and the covariance function of vSN are exactly given by (14) and
(15), i.e., the mean and the covariance of ûMAP.

3.2. rMAP as an iterative SN method for nonlinear inverse problems.
For a nonlinear forward map, rMAP is no longer the same as the SN method. Instead,
as we now show, it can be considered as an iterative SN method (iSN) when the full
Hessian is approximated by the Gauss–Newton Hessian. To begin, we note that the
rMAP sample ûMAP is a solution of the equation

(21) ∇J
(
u; û, d̂

)
= 0,

which can be solved using the Newton method. Each Newton iteration reads

uk+1 = uk −
[
∇2J

(
uk; û, d̂

)]−1
∇J

(
uk; û, d̂

)
, k = 1, . . . .

Now, the Gauss–Newton part of the full Hessian (19b) is given by

∇2Jg (u) = ∇G∗ (u) L−1∇G (u) + C−1,

which is independent of u0 and d. The SN proposal in this case can be written as

vSN = u−
[
∇2Jg (u)

]−1∇J (u;u0,d) +N
(

0,
[
∇2Jg (u)

]−1
)
,

with u denoting the current state of the SN Markov chain under consideration. On
the other hand, the rMAP method with Gauss–Newton Hessian can be written as

uk+1 = uk −
[
∇2Jg

(
uk
)]−1∇J

(
uk; û, d̂

)
, k = 1, . . . .

In particular, as we define the initial guess to be u1 = u, we have

(22) u2 = u−
[
∇2Jg (u)

]−1∇J
(
u; û, d̂

)
.

Now, by definition of û and d̂, there exist ũ and d̃ such that

û = u0 + ũ and d̂ = d + d̃,
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where
ũ ∼ N (0, C) and d̃ ∼ N (0,L) .

Consequently, by linearity of ∇J (u; ·, ·) with respect to the last two arguments (see
(19a)) we have

∇J
(
u; û, d̂

)
= ∇J (u;u0,d)−∇G∗ (u) L−1d̃− C−1ũ,

and (22) becomes

u2 = u−
[
∇2Jg (u)

]−1∇J (u;u0,d)−
[
∇2Jg (u)

]−1
(
∇G∗ (u) L−1d̃ + C−1ũ

)
︸ ︷︷ ︸

u†

.

Next, the proof of Lemma 3.4 shows that u† is distributed byN
(

0,
[
∇2Jg (u)

]−1
)

.

Therefore, u2 and vSN are identically distributed. The difference between the rMAP
and SN methods is now clear: the SN method uses u2 as the MCMC proposal, while
the rMAP first continues to iterate until (21) is (approximately) satisfied and then
takes the last uk as the proposal. In this sense, rMAP can be viewed as an iterative
SN method.

3.3. Relation between rMAP and the randomize-then-optimize ap-
proach. This section draws a connection between the rMAP method and the (RTO)
approach [1]. We shall show that they are identical for a linear forward map (linear
inverse problems) but different if the forward map is nonlinear. We also propose a
modification for the RTO method.

The difference between RML and RTO is best demonstrated for finite dimensional
parameter space. In this case, the jth rMAP can be computed as

(23) urMAP
j := arg min

u

1
2

∣∣∣L− 1
2 (d + θj − G (u))

∣∣∣2 +
1
2

∣∣∣C− 1
2 (u− u0 − εj)

∣∣∣2 ,
while the jth RTO sample [1] can be written as

(24) uRTOj := arg min
u

1
2

∥∥∥∥QT

[
L−

1
2 (G (u)− d− θj)

C− 1
2 (u− u0 − εj)

]∥∥∥∥2

,

where Q is the first factor in the “thin” QR factorization of

(25) G := G
(
uMAP) :=

[
L−

1
2∇G

(
uMAP) , C− 1

2

]T
= QR

evaluated at the MAP point. Due to the presence of C−1, G has full column rank,
and hence R is invertible. Clearly, rMAP samples urMAP

j are not the same as RTO
samples uRTOj since they are extrema of different cost functions in general.

Now, let us assume that the forward map is linear, i.e., G (u) = Bu. Setting the
derivative, with respect to u, of the cost function in (23) to zero yields the following
equation for the jth rMAP sample urMAP

j :

G
T
[

L−
1
2 (Bu− d− θj)

C− 1
2 (u− u0 − εj)

]
= 0.
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Using (25) and the fact that Q is orthonormal, we arrive at

G
T
QQT

[
L−

1
2 (Bu− d− θj)

C− 1
2 (u− u0 − εj)

]
= 0,

which is exactly the equation for the jth RTO sample uRTOj if one sets the derivative,
with respect to u, of the cost function in (24) to zero. In other words, we have shown
that RTO is identical to rMAP for linear inverse problems.

Up to this point we have observed that the RTO method requires a QR factoriza-
tion of G which could be computationally intractable for large-scale inverse problems
in high dimensional parameter spaces. We propose to use G in place of Q. For a
general forward map, the modified RTO problem reads (compared to (24))

(26) uRTOj := arg min
u

1
2

∥∥∥∥GT
[

L−
1
2 (Bu− d− θj)

C− 1
2 (u− u0 − εj)

]∥∥∥∥2

,

and hence RTO samples now satisfy the equation

(27) GT (u) G G
T
[

L−
1
2 (Bu− d− θj)

C− 1
2 (u− u0 − εj)

]
= 0.

The modified approach has a couple of advantages: (1) QR-factorization of (pos-
sibly large-scale) G is no longer needed, and (2) there is no need to construct G since
all we need is its action, which can be computed efficiently using an adjoint technique.
The determinant of G

(
uRTO

)T
G is necessary if the RTO density is needed, but this

is readily available from the MAP calculation and the computation of uRTO.

4. Metropolis-adjusted rMAP method. Recall from Lemma 3.4 that for
linear inverse problems, the rMAP sample is exactly distributed by the posterior
measure ν. When the forward map is nonlinear, Proposition 3.2 shows that this is
no longer true. In this case, rMAP samples have bias which should be removed via,
for example, the standard Metropolization [53]. The work in [48] shows that for some
nonlinear test problems, the acceptance rate is above 90%, and the authors proposed
to accept all rMAP samples. This simple strategy has been shown to work well in many
cases (see, e.g., [34, 49]), though the resulting Markov chain can over/underestimate
the actual posterior. We shall show that this is the case for our inverse problem, and a
debiasing procedure is necessary. An exact Metropolization has been proposed in [48],
but it is intractable except for problems with (very) small parameter dimension. We
therefore propose an approximate Metropolized step, and this is done using a finite
dimensional framework. To that end, we replace û by finite dimensional vector u,
e.g., a vector of finite element nodal values.

Following [46], we begin by defining

(28) δ = G
(
ûMAP

)
− d̂.

Note that ûMAP also satisfies (21), which for the finite dimensional setting becomes

(29) ∇G∗
(
ûMAP

)
L−1

[
G
(
ûMAP

)
− d̂

]
+ C−1

(
ûMAP − û

)
= 0.

We can view (28) and (29) together as the definition of a map T : (û, d̂) →
(ûMAP, δ), and we assume that this map is locally invertible. This allows us to
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explicitly write T −1 as

(30)
[
û

d̂

]
= T −1(ûMAP, δ) =

ûMAP + C∇G∗
(
ûMAP

)
L−1δ

G
(
ûMAP

)
− δ

 .
That is, we know T implicitly through its inverse. Given the fact that the distribution
of (û, d̂) is available, the distribution of (ûMAP, δ) can be computed via the Jacobian
of the transformation:

J :=
∂
(
û, d̂

)
∂
(
ûMAP, δ

) =

I + C∇2G∗
(
ûMAP

)
⊗ L−1δ C∇G∗

(
ûMAP

)
L−1

∇G
(
ûMAP

)
−I

 .
Simple algebra yields the determinant as

(31) |J | =
∣∣∣det

(
I + C∇G∗

(
ûMAP

)
L−1∇G

(
ûMAP

)
+ C∇2G∗

(
ûMAP

)
⊗ L−1δ

)∣∣∣ ,
which is nothing but the determinant of ∇2J scaled by a determinant of the prior
covariance.

Let us denote by h
(
ûMAP, δ

)
the density of proposing the pair

(
ûMAP, δ

)
via the

map T described above. Clearly, it is the push-forward of the probability of the pair(
û, d̂

)
. By the measure preservation property and the change of variables formula,

we have

h
(
ûMAP, δ

)
= f

(
T −1

(
ûMAP, δ

))
|J | ,

where f is defined as

(32) f
(
û, d̂

)
∼ exp

[
−1

2
(û− u0)T C−1 (û− u0)− 1

2

(
d̂− d

)T
L−1

(
d̂− d

)]
.

While the marginal distribution of ûMAP is desirable, the marginalization process on
h
(
ûMAP, δ

)
is not trivial (as shall be shown). This suggests that we can conduct the

sampling in the augmented space defined by
(
ûMAP, δ

)
. What remains is to construct

a joint posterior density of
(
ûMAP, δ

)
such that marginalizing out δ yields exactly

the posterior πpost. Similar to [47, 60], we may choose the joint posterior as

π
(
ûMAP, δ

)
∝ exp

[
−1

2

(
ûMAP − u0

)T
C−1

(
ûMAP − u0

)
− η1

2

(
G(ûMAP)− δ − d0

)T
L−1

(
G(ûMAP)− δ − d0

)
− η2

2
δTL−1δ

]
.

It can be shown that if η1 = η2/(η2 − 1) , the marginal distribution of ûMAP is exactly
the posterior distribution. Therefore, the conventional Metropolis–Hastings algorithm
can be applied to the joint distribution π

(
ûMAP, δ

)
, with h

(
ûMAP, δ

)
as the proposal

distribution. The acceptance rate in this case reads

α
(
ûMAP, δ

)
= min

1,
π
(
ûMAP∗ , δ∗

)
h
(
ûMAP
k , δk

)
π
(
ûMAP
k , δk

)
h
(
ûMAP∗ , δ∗

)
 ,
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where
(
ûMAP
k , δk

)
is the previous sample and

(
ûMAP∗ , δ∗

)
is the proposed sample

for the next state.
While the above augmented space method guarantees that ûMAP

k is correctly
distributed by the posterior distribution πpost in the limit, it can be prohibitively
expensive, especially for large-scale inverse problems. The reason is that adding the
data δ increases dimensionality, which can be significant if the data dimension is
large. Though MCMC methods are independent of the dimension, the number of
samples could be excessively large in order to obtain a reasonable result (the curse
of dimensionality). Moreover, the evaluation of the full Hessian as required in the
computation of the Jacobian can also be very expensive. To address these challenges,
we now present an approximate marginalization of δ that allows us to carry out
the MCMC method in the original space of ûMAP. A direct consequence of this
approximation is that ûMAP

k are no longer the truth samples of the posterior πpost even
in the limit. Nevertheless, our experiences, including the numerical results presented
in this paper, show that the results from the approximate Markov chain are very close
to those from the genuine Markov chain. To begin, we observe that

f
(
T −1

(
ûMAP, δ

))
= p

(
ûMAP

)
ζ (δ) η

(
ûMAP

)
,

where

p
(
ûMAP

)
= exp

(
−1

2

∣∣∣ûMAP − u0

∣∣∣2
C
− 1

2

∣∣∣G (ûMAP
)
− d0

∣∣∣2
L

)
is proportional to the posterior distribution,

ζ (δ) = exp
(
−1

2
(δ −HK)T H−1 (δ −HK)

)
,

and

η
(
ûMAP

)
= exp

(
1
2
KTHK

)
,

where H and K are given by

H−1 = L−1 + L−1∇G
(
ûMAP

)
C∇G∗(ûMAP)L−1

and

K = L−1
((
G
(
ûMAP

)
− d0

)
+∇G

(
ûMAP

)(
ûMAP − u0

))
.

Since the terms including δ constitute a Gaussian kernel, such a decomposition
allows us to marginalize δ and obtain the probability of proposing ûMAP:

q
(
ûMAP

)
=
∫
h
(
ûMAP, δ

)
dδ = p

(
ûMAP

)
η
(
ûMAP

)
ω
(
ûMAP

)
|J | ,

where ω
(
ûMAP

)
results from integrating with respect to δ, and it possesses the ex-

plicit form

ω
(
ûMAP

)
∝ |H|

1
2 = |L|−

1
2 |J |−

1
2 .
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Substituting these formulas into the decomposition of q
(
ûMAP

)
, we obtain the fol-

lowing ratio of posterior distribution over proposal distribution:

θ
(
ûMAP

)
=
p
(
ûMAP

)
q
(
ûMAP

) ∝ exp
(
−1

2
KTHK

)
|L|

1
2 |J |−

1
2 .

With this ratio, we are able to compute the acceptance ratio between a newly proposed
state ûMAP

∗ and a current state ûMAP
k . One computational consideration in practice

would be that directly computing the gradient of the forward map, ∇G
(
ûMAP

)
, can

be expensive when the number of measurements is high. A further practical simpli-
fication would be approximating α with only the |L|

1
2 |J |−

1
2 . Thus, the acceptance

ratio we adopt has the form

(33) α̃
(
ûMAP
∗ , ûMAP

k

)
=
θ
(
ûMAP
∗

)
θ
(
ûMAP
k

) ≈
∣∣∣J(ûMAP

k )
∣∣∣ 12∣∣∣J(ûMAP

∗ )
∣∣∣ 12 .

In addition, we drop the higher order term in the Jacobian. In other words, we replace
the full Hessian in (31) with a Gauss–Newton Hessian. These simplifications appear
to be reasonable, as we will show in the numerical results.

It should be pointed out that we have recently shown that the misfit (Gauss–
Newton) Hessian is a compact operator [10, 11]. Moreover, C 1

2 is also a compact oper-
ator by the definition of the Gaussian measure. It follows that C 1

2∇2Φg
(
ûMAP, d̂

)
C 1

2

is compact and admits low rank approximation. This is in fact one of the key points
that is exploited to construct a scalable and mesh-independent method in our pre-
vious work on extreme scale Bayesian inversion [9, 14]. Thus, computing |J | can be
done in a scalable manner independent of the mesh size using the randomized SVD
technique [31], for example.

5. Finite element discretization and optimization. For the practical prob-
lems we consider we assume the spatial dimension to be at least two; therefore we
choose s > 1 so that the infinite dimensional framework is well-defined as discussed in
section 2. As a result, evaluating the prior and/or generating a prior sample requires
us to discretize and/or solve a fractional PDE. Similarly to [8] (and references therein)
we combine the finite element method (FEM) [18] and the matrix transfer technique
(see, e.g., [35]) to discretize the (truncated) Karhunen–Loève (KL) expansion of the
prior. For the discretization of the forward equation and hence the likelihood, we also
use the same FEM.

Using finite element approximation, the MAP problem (5) becomes a (possibly)
high dimensional and nonlinear optimization problem. It is thus necessary to use the
state-of-the-art scalable optimization solver to minimize the cost. Here we choose
the trust region inexact Newton conjugate gradient (TRINCG) method, for which
some of the main ideas can be found in, e.g., [5, 7, 19, 45]. The method combines
the rapid locally quadratic convergence rate properties of the Newton method, the
effectiveness of trust region globalization for treating ill-conditioned problems, and
the Eisenstat–Walker idea of preventing oversolving. In the numerical results section,
we demonstrate the efficiency of this trust region method over popular Levenberg–
Marquardt (LM) techniques. As we shall see, in some difficult examples, choosing
TRINCG becomes critical in controlling computation time for rMAP sampling.
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5.1. Good initial guess for the rMAP algorithm. One of the most impor-
tant aspects of numerical optimization, particularly with the Newton method, is how
to choose a good initial guess. The closer the initial guess is to the basin of attraction
of a local minimum, the faster the convergence. This is clearly important since we
desire to minimize the cost of computing rMAP proposals. One way to achieve this is
through using sensitivity analysis, which we now describe. To begin, we distinguish
∇, the derivative with respect to u, from derivatives with other variables: for example,
∇ûi

and ∇d̂i
denote derivatives with respect to ûi and d̂i, respectively. Consider two

consecutive rMAP samples ûMAP
i and ûMAP

i+1 that satisfy

F
(
ûMAP
i ; ûi, d̂i

)
:= ∇J

(
ûMAP
i ; ûi, d̂i

)
= 0,(34)

F
(
ûMAP
i+1 ; ûi+1, d̂i+1

)
:= ∇J

(
ûMAP
i+1 ; ûi+1, d̂i+1

)
= 0.(35)

Now, let us define
ũ = ûi+1 − ûi and d̃ = d̂i+1 − d̂i.

Assuming that ûMAP
i is already computed from (34), we now construct an initial guess

for solving (35) using the Newton method:

(36) uinit = ûMAP
i +

〈
∇d̂i

ûMAP
i , d̃

〉
+
〈
∇ûi

ûMAP
i , ũ

〉
︸ ︷︷ ︸

T

,

which is simply the first order Taylor approximation of ûMAP
i+1 around

(
ûi, d̂i

)
.

What remains is to compute T in (36). To this end, we expand the gradient in
(35) using the first order Taylor expansion to obtain the following equation for T :

(37) ∇2J
(
ûMAP
i ; ûi, d̂i

)
T ≈ ∇G∗

(
ûMAP
i

)
L−1d̃ + C−1ũ.

Solving (37) requires an adjoint solve to evaluate the right-hand side and the in-
verse of ∇2J

(
ûMAP
i ; ûi, d̂i

)
(the Hessian evaluated at the ith rMAP sample). If∣∣ûMAP

i − ûMAP
i+1

∣∣ is small, uinit is a very good approximation of ûMAP
i+1 . Thus, solving

(35) with uinit as the initial guess helps substantially reduce the number of opti-
mization iterations (and hence the number of forward PDE solves). In practice, we
linearize around the MAP point (5), and this approach further reduces the number
of PDE solves since ∇2J

(
uMAP;u0,d

)
is fixed and can be well approximated using

low rank approximation [9, 14].

6. Numerical results. In this section, we present sampling results using several
test cases. In section 6.1, we first demonstrate the effectiveness of using the approx-
imated Metropolization for efficient rMAP sampling. We then use two analytical
functions to compare the sampling efficiency of the approximated rMAP to the RTO
method and to the SN method described above. In section 6.2, we again use the ap-
proximated rMAP method to sample a Bayesian inverse problem on a 2D Helmholtz
forward model. Therein, we compare the computational efficiency of the popular LM
method (see, e.g., [49]) to that of the TRINCG method for each rMAP sample and
the effectiveness of using a good initial guess as discussed in section 5. In order to
examine statistical convergence of rMAP methods, we also compare rMAP samples
with those from the delayed rejection adaptive Metropolis (DRAM) sampler [29].
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6.1. Analytical function example. Let us start by numerically demonstrating
how rMAP and RTO cost functions in (23) and (24), respectively, change the original
cost function in (5). To this end, we consider two analytical cost functions (negative
log posterior)

J1 :=
1
2

(u− 0.8)2 +
1

2× 0.22

(
u2 − 1

)2
,(38a)

J2 :=
1
2

(u− 1)2 +
1

2× 0.22

(
u3 − 0.8

)2
.(38b)

6.1.1. Comparison of augmented space Metropolization and its approx-
imation. We first compare the accuracy and statistical efficiency of the augmented
space Metropolization and its approximation presented in section 4. To this end we
choose to work with the cost function (38a) but with three different data variances
σ = {0.2, 0.5, 1.0}, i.e.,

J1 :=
1
2

(u− 0.8)2 +
1

2σ2

(
u2 − 1.0

)2
,

to construct three different posterior distributions. We sample these distributions
with both augmented space Metropolized rMAP and the approximated Metropolized
rMAP with 5000 samples. We plot the histograms at 200, 1000, and 5000 samples
in Figure 1. The results seem to indicate that the approximated method (magenta
histograms) converges more rapidly than the augmented space counterpart (cyan his-
tograms). This is also reflected in a comparison of acceptance ratio in Figure 2, in
which we observe that the acceptance rate for the approximate method is higher. One
of the reasons for the low acceptance rate of the augmented space method is again
due to the increase of dimensionality. For very skewed distribution (e.g., the fifth and
the sixth row of Figure 1), however, the approximate method is less accurate than
the augmented space counterpart. For the other cases, both methods are comparable.
Recall that the approximate method is also much less expensive. For these reasons,
we will use the approximate method throughout the rest of the paper.

6.1.2. Comparing rMAP and RTO methods. Figure 3 shows the original
cost functionals J1,J2 and their randomization with rMAP and RTO methods. (Note
that both the original RTO and our modified version give identical results for all
analytical results, and hence we do not distinguish them.) Here, we use the same
θ and ε for both rMAP and RTO. As can be seen, both randomized costs preserve
the characteristics, e.g., multimodality and skewness, of the original cost function.
However, they differ from the original cost function as well as from one other, which
agrees with our findings in section 3.3.

We next examine the sensitivity of both rMAP and RTO with multimodality
and optimization solvers. To that end, we first use the MATLAB routine fminunc,
the unconstrained optimization solver, and use the MAP point as the initial guess to
compute rMAP and RTO samples for the J1 cost functional. As can be seen in Figures
4(a) and 4(d), both methods are stuck in a mode. Instead, if we use ûj := u0 + εj
as an initial guess for computing the jth sample, we obtain the results in Figures
4(b) and 4(e), respectively. Clearly, both methods explore both modes well. Thus,
for rMAP and RTO to work with the local optimization solver, it is important that
initial guesses are well distributed in the parameter space. In fact, good initial guesses
also help significantly reduce the number of forward solves, as we will show in the
following subsection.
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Fig. 1. Comparison of sampling efficiency between the augmented space Metropolization and
its approximation. From left to right, the number of samples in each column is 200, 1000, and 5000.
From top to bottom, cyan plots are histograms produced by augmented space methods and magenta
plots are produced by the approximated Metropolization. (See online version for color.)

As a comparison, we employ the MATLAB constrained optimization solver
fminbnd, with prescribed bound −100 ≤ u ≤ 100 more than sufficient to cover the
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Fig. 2. Comparison of acceptance ratios between the augmented space Metropolization and its
approximation. In all cases, augmented space methods have a lower acceptance ratio due to the
higher dimensionality.

−1 −0.5 0 0.5 1
0

5

10

15

20

u

c
o

s
t

 

 

original
rMAP
RTO

(a) J1, and its rMAP and RTO.
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(b) J2, and its rMAP and RTO.

Fig. 3. Randomization of the cost functionals in (38) with rMAP and RTO methods.

modes. This optimization solver computes initial guesses using the golden section
rule. The results for rMAP and RTO are shown in Figures 4(c) and 4(f): rMAP still
works well in this case, while RTO is stuck in the left mode. Thus, rMAP seems to
be more robust with optimization solvers. From numerical experiments we observe
that rMAP tends to displace the original function more than RTO does, and this may
partially explain the robustness of the former. However, in this experiment, rMAP
seems to have introduced an artificial mode for the original function, as we now show
in Figure 5, for cost function J2. Note that the original cost function J2 has only one
mode, but it can become multimodal for a range of ε and θ. As can be observed in
Figures 5(a) and 5(c), rMAP puts a lot of samples in an artificial mode that was not
in the original function, while RTO does not seem to generate the artifact. With the
square root Jacobian correction in section 4, we can, in Figure 5(b), both remove that
artificial mode and improve the histogram for the actual mode. We can also improve
the RTO samples by first taking the RTO density as the importance sampling den-
sity and then using the importance weights to correct for RTO samples. The result
in Figure 5(d) shows that this strategy effectively improves RTO’s estimation of the
posterior distribution.
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−1 0 1
0

1

2

3

4

u

(a) rMAP: MAP initial guess.
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(b) rMAP: random initial guess.
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(c) rMAP: “Golden section” ini-
tial guess.
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(d) RTO: MAP initial guess.
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(f) RTO: “Golden section” ini-
tial guess.

Fig. 4. Sensitivity of rMAP and RTO with local optimization solvers and initial guesses.
Figures 4(a) and 4(d) show the results of fminunc and MAP initial guess. Figures 4(b) and 4(e)
show the results of fminunc and random prior means as initial guesses. Figures 4(c) and 4(f) show
the results of fminbnd and the default golden section rule initial guess. The cost functional J1 is
used to conduct these experiments.

6.1.3. Comparing rMAP and SN methods. In this section, we will numer-
ically confirm our discussion from section 3.2 on the improvement of rMAP over the
SN method. For concreteness, we choose J1 in (38a), a multimodal function, for the
comparison. We have shown in section 3.2 that rMAP can be viewed as an iterative
SN method. It is this deterministic iteration that can help rMAP explore the sam-
ple space more rapidly. In particular, rMAP can be interpreted as a globalization
strategy. It is in fact a move away from the inefficiencies of random-walk/diffusion
processes toward powerful optimization methods that use derivative information to
traverse the posterior.

For numerical comparison, we compute 1000 samples from the Metropolis-adjusted
rMAP sampler, and in this case the total number of Newton iterations is approxi-
mately 20,000. Since the parameter dimension is one, the total number of (forward
and adjoint) PDE solves is 40,000. For the SN Newton method, we take 100,000
samples. Three independent chains with three different initial states, namely the
origin and the left and right modes of the posterior distribution, are computed for
both samplers. Figure 6 shows the histogram of each chain together with the exact
density. We observe that rMAP chains are capable of sampling both modes and the
sampling results are independent of starting points. On the contrary, SN chains show
dependency on the starting points, and they are stuck in local minima.

6.1.4. Statistical convergence of rMAP. We also numerically examine Propo-
sition 3.2 using cost function J1. First, we compute the expectation Eθ×ε[S(u0,d,θ, ε)]
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(a) rMAP.
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(b) Corrected rMAP.
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Fig. 5. Illustration of artificial mode created by rMAP and correction strategies for both rMAP
and RTO. The correction for rMAP was achieved by the square root of the Jacobian in section 4, and
the correction for RTO was obtained via important sampling weights. The numerical experiments
were done for the cost functional J2.

using a tensor product Gauss–Hermite quadrature. Ten independent rMAP chains
are computed, each of which has one million samples. We compute the averages
{ 1
n

∑n
j=1 uj}Nn=1, N = 106, over each chain, and the results are compared to the

quadrature-based expectation. In Figure 7, it is shown that the approximate mean of
rMAP samples aligns well with the limit Eθ×ε [S (u0,d,θ, ε)] and hence confirms our
theoretical result in Proposition 3.2.

6.2. Helmholtz problems. Although our proposed framework is valid for
Bayesian inverse problems governed by any system of forward PDEs, here we illus-
trate the use of the framework on a frequency domain acoustic wave equation in the
form of the Helmholtz equation. Namely, the forward model B (u,w) is defined, in an
open and bounded domain Ω, as

−∇2w − e2uw = 0 in Ω,
∂w

∂n
= g on ∂Ω,

where w is the acoustic field, u is the logarithm of the distributed wave number field
on Ω, n is the unit outward normal on ∂Ω, and g is the prescribed Neumann source
on the boundary.

In subsection 6.2.1, we first discuss the computation of the gradient and Hessian of
the objective function using the adjoint method. The adjoint method enables tractable
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(a) rMAP. (b) SN (initial state at the left mode).

(c) SN (initial state at the origin). (d) SN (initial state at the right mode).

Fig. 6. Comparison of Metropolis-adjusted rMAP and SN MCMC methods for sampling multi-
modal problems. Three starting points are chosen for these two samplers, namely the left mode,
zero, and the right mode. The histograms are the same irrespective of the starting points for the
rMAP method, and hence only one plot is shown here. While SN chains are trapped in local minima,
rMAP counterparts traverse the posterior very well.

Fig. 7. Convergence test of rMAP samples against a quadrature evaluated expectation value.
Blue dashed lines show the errors of the 10 rMAP chains, each containing one million samples.
They align well with the the solid red line, which represents the theoretical, n−

1
2 convergence rate

from the central limit theorem. (See online version for color.)

computation of the MAP estimator, which is crucial to the rMAP algorithm. In sub-
section 6.2.2, we analyze the sampling results using the rMAP algorithm. Through
a comparison of the different optimization settings described above, we demonstrate
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the efficiency achieved by using the TRINCG solver and a good initial guess. In ad-
dition, the rMAP samples are compared with DRAM samples, where we observe that
Metropolis-adjusted rMAP samples provide statistical estimates with similar quality
compared to those obtained from DRAM, while requiring much less computation.

6.2.1. Computation of the gradient and Hessian-vector product. In this
section, we briefly discuss how to efficiently compute the gradient and Hessian-vector
product. Using the standard reduced space approach (see, e.g., [11]), one can show
that the (reduced) gradient ∇J

(
u; û, d̂

)
acting in any direction ũ is given by〈

∇J
(
u; û, d̂

)
, ũ
〉

= −2
∫

Ω
ũe2uwτ dΩ,

where the adjoint state τ satisfies the adjoint equation

−∇2τ − e2uτ = − 1
σ2

K∑
j=1

(w − dj) δ (x− xj) in Ω,(39a)

∂τ

∂n
= 0 on ∂Ω.(39b)

On the other hand, the Hessian acting in directions ũ and
'
u reads〈〈

∇2J
(
u; û, d̂

)
, ũ
〉
,
'
u
〉

=−4
∫

Ω
ũ
'
u e2uwτ dΩ−2

∫
Ω
ũe2uw̃τ dΩ−2

∫
Ω
ũe2uwτ̃ dΩ,

where the incremental forward state w̃ obeys the incremental forward equation

−∇2w̃ − e2uw̃ = 2
'
u e2uw in Ω,(40a)

∂w̃

∂n
= 0 on ∂Ω,(40b)

and the incremental adjoint state τ̃ obeys the incremental adjoint equation

−∇2τ̃ − e2uτ̃ = 2
'
u e2uτ − 1

σ2

K∑
j=1

w̃δ (x− xj) in Ω,(41a)

∂τ̃

∂n
= 0 on ∂Ω.(41b)

We shall compare our TRNCG optimization solver with the popular LM approach
(see, e.g., [45, 49]). For that reason, we need to compute the Gauss–Newton Hessian-
vector product. It can be shown that the Gauss–Newton Hessian acting in directions
ũ and

'
u reads 〈〈

∇2JGN
(
u; û, d̂

)
, ũ
〉
,
'
u
〉

= −2
∫

Ω
ũe2uwτ̃ dΩ,

where the incremental forward state w̃ still satisfies (40), but the incremental adjoint
state τ̃ now obeys the following incremental adjoint equation:

−∇2τ̃ − e2uτ̃ = − 1
σ2

K∑
j=1

w̃δ (x− xj) in Ω,(42a)

∂τ̃

∂n
= 0 on ∂Ω.(42b)
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6.2.2. Sampling results. Now we show the application of rMAP methods to
quantify the uncertainty for the inverse problem governed by the above Helmholtz
forward model. We create two experiments to compare and test the methods described
above. Finite element discretization of the prior results in a parameter field with 94
parameters for both experiments. Since the experiments aim at testing algorithms
rather than demonstrating Bayesian modeling, we conveniently fix the noise level for
both experiments to be 1%. On the other hand, we use different prior coefficients α
to control the “easiness” of sampling. We choose α = 8.0 for the first experiment and
α = 3.0 for the second experiment—these numbers are chosen after trials to clearly
represent two situations: a prior dominant case and a likelihood dominant case. When
the model is prior dominant, the inverse problem resembles a linear inverse problem
for which, following Lemma 3.4, rMAP should provide exact posterior samples. On
the other hand, for the likelihood dominant case, due to the nonlinearity of the forward
model, the rMAP samples are no longer exact posterior ones, and Metropolization
becomes necessary.

For each of these two experiments, we draw a sample from the prior distribution
and solve the forward equation (3) to generate a set of synthetic data as shown
in Figure 8. Then we sample the Bayesian model with the following four variants
of the rMAP method: TRINCG and LM, with/without good initial guesses. As a
comparison, we also sample the model with a DRAM sampler of five million samples,
which we consider large enough to be convergent.

 

 

−0.6

−0.4

−0.2

0

0.2

(a) Synthetic u (α = 8.0) .

 

 

−1

−0.5

0

0.5

(b) Synthetic u (α = 3.0) .

Fig. 8. Synthetic parameter u for two numerical experiments.

Since rMAP samples are not exact posterior samples for nonlinear problems, it
is not necessary to demand high accuracy (and hence high cost) in each optimization
solution. Yet, we still hope that for these loosely approximate rMAP samples, the
proposed Metropolization can effectively correct them towards the posterior distri-
bution. To that end, we set large tolerances: εF = εX = εG = 10−4 for the first
experiment and εF = εX = εG = 10−6 for the second. Ḟor a similar reason, we limit
the maximal allowed number of iterations to 150 and 200, respectively, to further
control the computational costs.

For each experiment and each variant of the method, we compute 1000 rMAP
samples. Within each experiment, we use the same randomly perturbed sequences
{û}1000

i=1 and {d̂}1000
i=1 for all four rMAP methods. Ideally, with this setting these

methods should have produced exactly the same rMAP samples if each optimizer had
converged. In practice, the acquired samples are different among these methods due
to the tolerance and iteration control.

Figures 9 and 10 show the estimated conditional mean and variance for the high
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prior and the low prior cases, respectively. In both cases, the plain rMAP samples
have nonnegligible approximation errors. These errors are successfully corrected with
a Metropolization using weights described in section 4. We point out that among
the four variants of the rMAP methods, the one that uses TRINCG and good initial
guesses shows optimal performance. Its statistical estimates are close to that of the
DRAM sampler in both experiments. This indicates the fast convergence of the
TRINCG method: even though we have relaxed the convergence criteria and limited
the number of iterations, TRINCG has always been able to get close to the real
optimizer rapidly. Our proposed method of computing initial guesses has further
ensured its efficiency. For a closer look, in Figures 11 and 12 we show a comparison
between sampling estimates of the DRAM and the rMAP using TRINCG with good
initial guesses.
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(a) mean (rMAP).
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(b) mean (weighted-rMAP).
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(c) Variance (rMAP).
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Fig. 9. Case with α = 8.0: Comparison of estimated statistics from all samplers. The top
row shows the conditonal mean estimate between (a) DRAM and rMAP samples and (b) DRAM
and Metropolized rMAP samples. The bottom row shows the corresponding comparison of variance
estimates.

Next, we analyze the computational efficiency of the rMAP samplers. Note that
the DRAM samples are highly correlated due to the large dimensionality of parame-
ter space; meanwhile, as we will show below, rMAP samples are almost statistically
independent, even for nonlinear problems. In order to compare computational per-
formance between rMAP and DRAM as well, we utilize a concept of effective sample
size (ESS), which is defined, for a sampler with a total of n samples, as

(43) ESS =
n

τ
,
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(c) Variance (rMAP).
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Fig. 10. Case with α = 3.0: Comparison of estimated statistics from all samplers. The top
row shows the conditonal mean estimate between (a) DRAM and rMAP samples and (b) DRAM
and Metropolized rMAP samples. The bottom row shows the corresponding comparison of variance
estimates.

and, for a model with L parameters in total, the averaged integrated auto-correlation
time (IACT) τ is computed by

τ =
1
L

L∑
l=1

(
1 + 2

∞∑
k=1

τ(k)

)
,

in which the auto-correlation function (ACF) τ(k) for a time series Xt with mean
value µ and variance σ2 is defined as

τ(k) =
E [(Xt − µ) (Xt+k − µ)]

σ2 .

Since PDE solve is the most time-consuming part, we take the total number of PDE
solves (assuming the cost of solving forward, adjoint, incremental forward, and incre-
mental adjoint equations is the same) as the measure of the computational cost.

Figure 13 shows the comparison of IACT for all parameters. For simplicity, we
only show the IACT for rMAP samples obtained through the TRINCG together
with good initial guesses. We then obtain the mean IACTs to be τDRAM = 461.90,
τ rMAP = 1.00, and τweighted-rMAP = 1.11 for the first experiment, and τDRAM =
564.32, τ rMAP = 1.10, and τweighted-rMAP = 1.2743 for the second experiment. There-
fore, 1000 rMAP samples correspond to about 415,000 DRAM samples when α = 8.0
and correspond to about 443,000 DRAM samples when α = 3.0. As a result, for
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Fig. 11. Comparison of estimates for the first experiment with α = 8.0. The top row shows
the conditional mean estimate. The bottom row shows comparison of variance estimation. All the
rMAP samples are obtained from the TRINCG method with good initial guesses.
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Fig. 12. Comparison of estimates for the second experiment with α = 3.0. The top row shows
the conditional mean estimate. The bottom row shows comparison of variance estimation. All the
rMAP samples are obtained from the TRINCG method with good initial guesses.

comparing computational costs in both experiments, we take into consideration 1000
rMAP samples and 400,000 DRAM samples.

We compare costs of different sampling/optimization strategies in Tables 1 and
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Fig. 13. IACT for DRAM, rMAP, and weighted-rMAP for all parameters. Samples from
TRINCG with good initial guesses are used to compute these IACTs.

2. It is obvious that, compared with the LM method, TRINCG improves in efficiency
both with and without a warm-start; for example, when good initial guesses are
adopted, LM is about 60% and about 320% more expensive than TRINCG, respec-
tively. The importance of the warm-start strategy is also evident from these tables.
In particular, good initial guesses speed up the LM algorithm significantly (at least
fivefold) in the prior-dominated case such that the rMAP sampler with LM performs
better than DRAM with a statistically comparable number of samples. Nonetheless,
the computational costs of the LM method in Table 2 are higher than those of the
corresponding DRAM sampler even with good initial guesses, leaving TRINCG as
the only tractable choice for rMAP sampling of this “difficult” likelihood-dominated
problem.

Table 1
Cost for the case α = 8.0. The cost is measured in the number of PDE solves in generating

1000 rMAP samples using four combinations: with either TRINCG or LM and with or without
warm-start strategy. As a comparison, the cost for the DRAM sampler to get 400,000 samples is
shown in the last row.

rMAP Good initial guess Random initial guess
TRINCG 208367 288254
LM 334618 1626279
DRAM 732917

Table 2
Cost for the case α = 3.0. The cost measured in the number of PDE solves in generating 1000

rMAP samples using four combinations: with either TRINCG or LM and with or without warm-
start strategy. As a comparison, the cost for the DRAM sampler to get 400,000 samples is shown
in the last row.

rMAP Good initial guess Random initial guess
TRINCG 511956 568671
LM 1639601 2705973
DRAM 706017D
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7. Conclusions. In this paper we present a randomized maximum a posteriori
(rMAP) approach to approximately sample posteriors of nonlinear Bayesian inverse
problems in high dimensional parameter spaces. The idea is to cast the standard
MAP computation as a stochastic optimization problem and use the sample aver-
age approach to approximate the expectation. We have shown that the randomized
maximum likelihood method is a special case of the proposed rMAP method. The
stochastic programming viewpoint allows us to provide additional theoretical results in
both finite and infinite dimensions and for both linear and nonlinear inverse problems,
leading to a better understanding of rMAP. The appeal of the proposed approach is
that each rMAP sample requires solution of a PDE-constrained optimization problem
which can be carried out efficiently using a trust region inexact Newton conjugate
gradient (TRINCG) method. To further reduce the cost of each rMAP sample, we
develop a warm-start strategy using sensitivity analysis via an efficient adjoint tech-
nique. Viewing rMAP as an iterative SN method reveals that rMAP is in fact a move
away from the inefficiencies of random-walk/diffusion processes toward powerful op-
timization methods that use derivative information to traverse the posterior.

We have established a connection between the rMAP approach and a closely re-
lated randomize-then-optimize method. We show that they are identical for linear
inverse problems but different for nonlinear ones. Since rMAP samples are approxi-
mate samples of the posterior, we present an approximate Metropolization to reduce
the bias. We have also discussed finite element method (FEM) discretization of the
infinite dimensional Bayesian inverse problem, solving optimization problems at each
sampling step with the TRINCG method, and a sensitivity analysis–based warm-start
strategy. Analytical and numerical experiments are presented to confirm various the-
oretical results and demonstrate the potential of the rMAP approach for difficult
nonlinear Bayesian inverse problems.
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