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by

Tan Bui-Thanh
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requirements for the degree of
Doctor of Philosophy in Aeronautics and Astronautics

Abstract

Most model reduction techniques employ a projection framework that utilizes a
reduced-space basis. The basis is usually formed as the span of a set of solutions
of the large-scale system, which are computed for selected values (samples) of in-
put parameters and forcing inputs. In existing model reduction techniques, choosing
where and how many samples to generate has been, in general, an ad-hoc process. A
key challenge is therefore how to systematically sample the input space, which is of
high dimension for many applications of interest.

This thesis proposes and analyzes a model-constrained greedy-based adaptive sam-
pling approach in which the parametric input sampling problem is formulated as an
optimization problem that targets an error estimation of reduced model output pre-
diction. The method solves the optimization problem to find a locally-optimal point
in parameter space where the error estimator is largest, updates the reduced basis
with information at this optimal sample location, forms a new reduced model, and re-
peats the process. Therefore, we use a systematic, adaptive error metric based on the
ability of the reduced-order model to capture the outputs of interest in order to choose
the snapshot locations that are locally the worst case scenarios. The state-of-the-art
subspace trust-region interior-reflective inexact Newton conjugate-gradient optimiza-
tion solver is employed to solve the resulting greedy partial differential equation-
constrained optimization problem, giving a reduction methodology that is efficient
for large-scale systems and scales well to high-dimensional input spaces.

The model-constrained adaptive sampling approach is applied to a steady thermal
fin optimal design problem and to probabilistic analysis of geometric mistuning in
turbomachinery. The method leads to reduced models that accurately represent the
full large-scale systems over a wide range of parameter values in parametric spaces
up to dimension 21.

Thesis Supervisor: Karen E. Willcox
Title: Associate Professor of Aeronautics and Astronautics
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min Smallest singular value of the system matrix A, see equation (2.17), page 43

τ Some given tolerance, see equation (3.22), page 57

ϕk Merit function in the trust region subproblem at the kth Newton step, see

equation (3.20), page 56

R

A System matrix of the full model, see equation (2.5), page 40

Ar System matrix of the reduced model, see equation (2.9), page 40

B Input matrix of the full model, see equation (2.5), page 40

Br Input matrix of the reduced model, see equation (2.9), page 40

Bi Biot number, see equation (4.0), page 78

C Output matrix of the full model, see equation (2.5), page 40

Cr Output matrix of the reduced model, see equation (2.9), page 40

CL Lift coefficient, see equation (5.23), page 122

CM Moment coefficient, see equation (5.23), page 122

D Diagonal scaling matrix, see equation (3.16), page 55

DCL Coleman-Li diagonal scaling matrix, see equation (3.16), page 55

d Number of parameters, see equation (2.1), page 38

E Mass matrix of the full model, see equation (2.5), page 40
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e Error between the full solution and its approximation, see equation (2.12),

page 41

Er Mass matrix of the reduced model, see equation (2.9), page 40

Fx Euler flux in x-direction, see equation (5.3), page 108

Fy Euler flux in y-direction, see equation (5.3), page 108

ḡ Average geometric variation, see equation (5.14), page 116

G Cost functional or the objective function, see equation (3.1), page 51

g General blade geometry, see equation (5.14), page 116

gn Nominal blade geometry, see equation (5.14), page 116

ℓ Linear functional, see equation (4.6), page 79

LUF
f Number of flop counts incurred by the LU factorization for the full model, see

equation (3.23), page 59

LUF
s Number of flop counts for each triangular solve for the full model, see equa-

tion (3.23), page 59

m Reduced model size, see equation (2.1), page 38

n̂ Normal vector, see equation (4.2), page 79

n Full model size, see equation (2.1), page 38

nG Number of greedy cycles, see equation (3.23), page 60

ns Number of geometric mode shapes or the number of snapshots, see equa-

tion (5.14), page 116

nt Number of time steps, see equation (2.21), page 45

nHv Number of Hessian-vector products, see equation (3.23), page 59
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P Output operator, see equation (2.1), page 38

P Pressure, see equation (5.3), page 108

p Number of inputs, see equation (2.1), page 38

Q Error indicator, see equation (3.9), page 52

q Number of outputs, see equation (2.1), page 38

R Residual operator resulting from a numerical discretization of a set of PDEs,

see equation (2.1), page 38

Rk Residual vector at the kth time step, see equation (2.22), page 45

IR Set of real numbers, see equation (2.1), page 38

s (Inexact) Newton step, see equation (3.18), page 55

Sk Trust region subspace at the kth Newton step, see equation (3.20), page 56

t Time, see equation (2.1), page 38

tf Time horizon of interest, see equation (3.13), page 53

u Time-dependent input vector, see equation (2.1), page 38

uk Input vector at the kth time step, see equation (2.21), page 45

Vm Reduced trial space, see equation (2.1), page 38

vi ith geometric mode shapes, see equation (5.14), page 116

Wm Reduced test space, see equation (2.1), page 38

x̃ Approximate solution vector computed from the reduced model, see equa-

tion (2.1), page 38

x Solution (state) vector of the full model, see equation (2.1), page 38

x0 Specified initial state of the full model, see equation (2.1), page 38
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xk Full state vector at the kth time step, see equation (2.21), page 45

xr Solution (state) vector of the reduced model, see equation (2.2), page 38

xr(0) Initial condition of the reduced model, see equation (2.3), page 39

xk
r Reduced state vector at the kth time step, see equation (2.22), page 45

x̃k Approximation of the full solution at the kth time step, see equation (2.22),

page 45

x x-coordinate, see equation (5.3), page 108

y Output vector of the full model, see equation (2.1), page 38

yr Output vector of the reduced model, see equation (2.3), page 39

y y-coordinate, see equation (5.3), page 108

z Vector containing the parameters of interest, see equation (2.1), page 38

z∗ Maximizer of the greedy optimization problem, see equation (3.13), page 53

z0 Initial guess for the parameter vector z in the bound-constrained optimization

solver, see equation (3.13), page 53

zmax Upper bound of the parameter vector z, see equation (3.9), page 52

zmin Lower bound of the parameter vector z, see equation (3.9), page 52

25



26



Chapter 1

Introduction

1.1 Motivation

Recent years have seen considerable progress in solution and optimization methods

for partial differential equations (PDEs), leading to advances across a broad range of

engineering applications, including computational fluid dynamics (CFD), structural

dynamics, aeroelasticity, and large-scale optimization, to name a few. Improvements

in both methodology and computing power have been substantial; however, a number

of challenges remain to be addressed. In many cases, computational models for PDEs

lead to large-scale systems of equations that are computationally expensive to solve,

e.g. for applications such as optimal design or probabilistic analyses.

Model order reduction is a powerful tool that permits the systematic generation

of cost-efficient representations of large-scale systems that result from discretization

of PDEs. Several reduction methods have been developed, for example, modal trun-

cation [2, 3], proper orthogonal decomposition (POD) [4, 5], balanced truncation [6],

Krylov-subspace methods [7–9], reduced basis methods [10], and a quasi-convex opti-

mization approach [11]. These methods have been applied in many different settings

with considerable success, including controls [12, 13], fluid dynamics [4, 5], structural

dynamics [14–19], and circuit design [20–22]. However, a number of open issues re-

main with these methods, including efficient model reduction techniques for systems

with large input spaces, and for nonlinear systems.
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Optimal design, optimal control [23, 24], probabilistic analysis [25] and inverse

problem applications [26] present additional challenges for model reduction methods.

In such cases—where the physical system must be simulated repeatedly—the avail-

ability of reduced models can greatly facilitate solution of the optimization problem,

particularly for large-scale applications. To be useful for these applications, the re-

duced model must provide an accurate representation of the high-fidelity model over

a wide range of parameters. In particular, discretization produces high-dimensional

input spaces when the input parameters represent continuous fields (such as initial

conditions, boundary conditions, distributed source terms, and geometric variability).

Model reduction for high-dimensional input spaces remains a challenging problem.

Approaches developed for dynamical systems, such as POD and Krylov-based meth-

ods, have been applied in an optimization context [21, 27, 28]; however, the number

of parameters in the optimization application was small.

Nonlinearity of the underlying physics of problems at hand presents another chal-

lenge for projection-based model order reduction. The difficulty here is how to obtain

an efficient reduced model. Even though the size of the reduced model is much smaller

than that of the full model, in the nonlinear case it is not necessarily true that solving

the reduced model is cheaper than solving the full model. For example, if the reduced

matrices depend on the full model size and if forming (or evaluating) the full matrices

is the dominant cost, then solving the reduced model may be more expensive than

solving the full one because one has to first evaluate the full matrices before evalu-

ating the reduced ones. If, on the other hand, the reduced matrices do not depend

on the full model size, they can be evaluated once in the offline stage, and in the

online stage, the cost of solving the reduced model is negligible. Therefore a reduced

model must be not only valid for a range of parameters but also independent of the

full model size.
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1.2 Literature Review

1.2.1 Projection-Based Model Reduction Techniques

Most reduction techniques for large-scale systems employ a projection framework that

utilizes reduced-space bases. The key challenge in projection-based model reduction

is how to find a reduced basis such that the reduced system provides an accurate

representation of the large-scale system over the desired range of inputs. Algorithms

such as optimal Hankel model reduction [29–31] and balanced truncation [6] have

been used widely throughout the controls community to generate reduced models with

strong guarantees of quality. These algorithms can be carried out in polynomial time;

however, the computational requirements make them impractical for application to

large systems such as those arising from the discretization of PDEs, for which system

orders typically exceed 104.

While considerable effort has been applied in recent years towards development of

algorithms that extend balanced truncation to large-scale linear time-invariant (LTI)

systems [32–35], efficient algorithms for very large systems remain a challenge. In

addition, application of balanced truncation methods to systems that are linear time-

varying or have parametric variation has been limited to small systems [36–38]. The

Krylov-subspace methods [7–9] have been shown to be an alternative efficient model

reduction method for large-scale LTI systems. Meanwhile, the POD method [4,5,39,

40] has emerged as a popular alternative for reduction of very large dynamical systems.

POD has been used widely throughout CFD applications such as aeroelasticity [41,42]

and flow control [27, 28]. However, both Krylov-subspace and POD methods lack

the quality guarantees of methods such as balanced truncation. As opposed to the

balanced truncation method, computing a reduced basis in Krylov-subspace and POD

methods is straightforward; the reduced basis is formed as the span of a set of state

solutions, commonly referred to as snapshots. These snapshots are computed by

solving the full system for selected values of the parameters and selected forcing inputs

(possibly selected frequencies if a Krylov-subspace method is used). The quality of

the resulting reduced-order model is very dependent on the choice of parameters and
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inputs over which snapshots are computed. This is because the span of the snapshot

determines the span of the reduced basis, which in turn determines the quality of the

resulting reduced-order model. A key issue that needs to be addressed is therefore

sampling; that is, how to choose the parameters and inputs over which to compute

the basis.

1.2.2 Sampling for Model Reduction in Multi-Dimensional

Parameter Spaces

In previous model reduction techniques via POD or Krylov-based methods, choosing

where and how many samples to generate has been, in general, an ad-hoc process.

Standard schemes such as uniform sampling (uniform gridding of the parameter space)

or random sampling are not optimal. More importantly, if the dimension of the pa-

rameter space is large, uniform sampling will quickly become too computationally ex-

pensive due to the combinatorial explosion of samples needed to cover the parameter

space. Random sampling, on the other hand, might fail to recognize where the impor-

tant parameters are in the parameter space. One sampling strategy that compromises

between the uniformity and the size of the sample is the stratified sampling family

of which the popular Latin hypercube sampling (LHS) method is one example [43].

The LHS method is more efficient than uniform sampling and often more accurate

than random sampling. Recently, the centroidal voronoi tessellation (CVT) sampling

method [44–46] has arisen as a promising method. Initial evaluations [45–47] show

that compared to LHS, the random sampling Monte Carlo methods, and Hammersley

quasi Monte Carlo sequence methods, on balance the CVT sampling performs best at

least for statistical sampling and function integration. Nonetheless, no attempt has

compared these sampling methods in the context of efficient and accurate snapshot

generation for model reduction of large-scale engineering problems.

One can use knowledge of the application at hand to determine representative

inputs. In particular, empirical knowledge of the problem has been used to create

the training parameter set for the quasi-convex optimization relaxation method [11],
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and to sample a parameter space to generate a POD or Krylov basis for cases

where the number of input parameters is small, for example optimal control ap-

plications [27, 28, 48, 49], aerodynamic applications [50, 51], physical processes [52],

parametrized design of interconnect circuits [20–22], and in the case of multiple pa-

rameters describing inhomogeneous boundary conditions for parabolic PDEs [53].

However, this empirical approach breaks down for cases with many parameters. The

recently developed iterative rational Krylov algorithm [54] proposes a systematic

method for selecting interpolation points for multipoint rational Krylov approxima-

tions based on the rigorous H2-norm optimality criterion. This method has been ap-

plied to reduction of large-scale LTI systems, although its extension to parametrized

LTI systems remains an open question.

Intuitively, one should not select parameter points where the error between the

full and the reduced models is small since the reduced model is already a good ap-

proximation at these points. As a result, sampling the small error region increases

the cost but no new information is added to the snapshot set. Instead, large er-

ror parameter points should be selected [55–57]. Recently, a greedy algorithm has

been proposed to address the challenge of sampling a high-dimensional parameter

space to build a reduced basis [55, 56, 58–62]. The greedy algorithm adaptively se-

lects snapshots by finding the location in a training parameter set where an output

error bound is maximal, updating the reduced basis with the solution at this sample

location, forming a new reduced model, and repeating the process. The method has

been successfully applied to many applications with small number of parameters such

as fluid dynamics [56, 63], structure [56, 61], heat transfer [55, 61] and inverse prob-

lems [61,62]; however, like the Krylov-subspace and POD methods, the quality of the

training parameter set remains an open question.

1.2.3 Nonlinearity Treatments in Model Reduction

Recent efforts towards efficient nonlinear reduced models for the Euler and Navier-

Stokes equations have been successful [12,13,64], by exploiting the special structure of

the nonlinear terms of the governing equations so that reduced models are completely
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independent of the full model size. For general nonlinear problems, this approach is no

longer applicable. If the problems under consideration are weakly nonlinear, efficient

reduced models could be obtained by retaining low order terms in the Taylor expan-

sion of nonlinear terms [65]. Another approach is to use the trajectory piecewise-linear

scheme [66] in which a weighted combination of various linear models is employed,

hence a better approximation to the nonlinear behavior compared with using a single

model; however, this method was found to be very sensitive and not robust to tuning

parameters for CFD problems [67]. Refs. 61,62,68,69 propose an empirical interpola-

tion method in which the nonlinear terms are approximated as a linear combination

of empirical basis functions. Theoretical and numerical results show that this method

is a promising approach for a general nonlinear problem.

1.2.4 Model Reduction Applications

Despite the fact that there are still open issues remaining to be addressed, model order

reduction has been successfully applied to many areas of engineering. In particular,

the reduced basis approach has been applied in the heat transfer context to design a

thermal fin to minimize the material cost and the power required to effect the desired

cooling [70]. In the context of active flow control, the POD method has been used to

control the wake unsteadiness downstream of flow past a cylinder [13], and to control

the driven velocity in a driven cavity flow and the vorticity in a channel flow over a

backward-facing step [12]. In order to address the fact that the POD basis must be

updated for the reduced model to be still a good representation of the full model when

the control input changes, the trust-region POD (TRPOD) [71,72] and the POD for

optimality system (OS-POD) [73] have been proposed and applied successfully for

flow control problems. For applications in interconnect circuit analysis and MEMS,

the quasi-convex optimization approach [11], the Krylov-based methods [20–22], the

trajectory piecewise-linear scheme [66], and truncated balanced realization [74] have

been applied to reduce full systems with thousands of states to reduced systems with

a handful number of states, while accurately capturing the full system behavior. In

the context of mistuning analysis of bladed-disks, both structural model reduction
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[14–19] and aerodynamic model reduction [75] are able to accurately represent the

large-scale full models with a handful number of reduced states. For aeroelasticity

applications, both flutter and limit cycle oscillation predictions have been successful

with the POD method in reducing more than three quarters of a million degrees of

freedom to a few dozen degrees of freedom [76, 77]. Recently, the POD method has

been applied to the CFD-based reduced-order aeroelastic modeling of a complete F-

16 fighter configuration [78]. The results show that the reduced model aeroelastic

predictions are in very good agreement with the full nonlinear model results and the

experimental data.

1.3 Thesis Objectives

The objective of this thesis is to derive a general framework for efficient evaluation

of the effects of parametric inputs (for example, shape variations, PDE coefficients,

initial conditions, etc.) in the design and probabilistic analysis of large-scale systems,

using model reduction methods.

In particular, this thesis aims to:

1. Develop a systematic technique for sampling parametric input spaces of high

dimension in order to create a reduced basis.

2. Create reduced models that span the parametric input space for general large-

scale systems—resulting from discretization of PDEs, for example—and quan-

tify the ability of the reduced models to predict the outputs of interest over the

parametric input space.

3. Demonstrate the proposed parametrized model reduction technique for two

problems: optimal design of a steady heat conduction problem, and probabilis-

tic analysis of the effects of blade shape variations on unsteady forced response

of compressor blades.
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1.4 Thesis Contributions

The main contributions of the thesis are to:

1. Develop a greedy-based adaptive model order reduction approach for general

parameter-dependent problems such that:

• The reduced basis takes into account the outputs of interest and the gov-

erning equations.

• The reduced basis spans both parametric and temporal spaces.

• The cost of constructing the reduced basis scales well to large dimensional

parameter spaces.

2. Propose a reduction method for probabilistic analysis of the geometric mistuning

problem in turbomachinery

1.5 Thesis Outline

In Chapter 2, methodologies to obtain reduced models for both steady and unsteady

problems are discussed. In particular, components of a general projection-based

model order reduction method will be developed. Components of the model order

reduction method that could make the approximate solution unbounded are identi-

fied and investigated. Then, approaches to overcome the instability are discussed. In

Chapter 3, a model-constrained greedy-based adaptive sampling method is proposed

for reduction of large-scale problems that depend on a large number of parameters.

First, the model-constrained adaptive sampling concepts, mathematical formulation

and solution methodology of the greedy optimization problem—which is one of the key

components of the model-constrained adaptive sampling approach—are presented.

An analysis of the proposed adaptive sampling approach is then carried out. Chap-

ter 4 applies the model-constrained adaptive sampling approach and the projection-

based model reduction methods on the steady thermal fin optimal design problem.
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A number of numerical simulations are presented to validate the theoretical develop-

ments in Chapter 3 and to compare the model-constrained sampling approach with

other existing sampling methods. The application of the model-constrained adaptive

model reduction method—which is the combination of the model-constrained adaptive

sampling approach proposed in Chapter 3 and the projection-based model reduction

techniques discussed in Chapter 2—in the context of optimal design is then discussed.

To prepare for the numerical results in Chapter 6, Chapter 5 presents an unsteady

linearized CFD model based on the Discontinuous Galerkin finite element method. A

linearized CFD model for incorporating geometric variation effects into the unsteady

simulation is then developed. Numerical results to validate the linearized CFD model

are also discussed. Chapter 6 begins with a numerical result to demonstrate the sta-

bility and the convergence of the Petrov-Galerkin-projection-based model reduction

discussed in Chapter 2. The application of the model-constrained adaptive model

reduction approach to find reduced models for an unsteady problem in turboma-

chinery application is then presented. In particular, the application of the resulting

reduced models in the context of probabilistic analysis with a large number of geo-

metric variability parameters is investigated. Finally, Chapter 7 concludes the thesis

with recommendations for extensions and future work.
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Chapter 2

Projection-Based Model Order

Reduction

In this chapter we discuss methodologies to obtain reduced models for both steady

and unsteady problems. In particular, the chapter begins by developing components

of a general projection-based model order reduction method. We first investigate why

a projection-based reduced model could be unstable. That is, we identify components

of the model order reduction method that could make the approximate solution un-

bounded. Then we discuss approaches to overcome the instability. One of the main

ingredients is the minimum-residual (least-squares) projection that is widely used

in linear algebra [79], in the finite element community [80–82], and recently in the

reduced basis context [83–85].

2.1 General Projection-Based Model Order Reduc-

tion

Most large-scale model reduction frameworks are based on a projection approach,

which can be described in general terms as follows. Given a large-scale dynamical

problem
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Find x ∈ IRn such that

R(ẋ,x, z,u, t) = 0, x(0) = x0, y = P(x, z,u, t), (2.1)

where x = x(z,u, t) ∈ IRn is the full solution (state) vector, z ∈ IRd is the vector

containing the parameters of interest, t denotes time, x0 is the specified initial state,

u = u(t) ∈ IRp is some time-dependent input vector, R is some discrete operator

(residual operator resulting from a numerical discretization of a set of PDEs, for

example), and y ∈ IRq is a vector containing q outputs of interest computed by

some output operator P. The dynamical system (2.1) could be, for example, the

finite element discretization of a set of PDEs, or governing equations in molecular

dynamics simulation, or a dynamical system from circuit simulation, etc.

We will develop projection-based model order reduction techniques using linear

algebra tools [79, 86, 87]. The functional analysis point of view, i.e. using variational

tools, can be found in Refs. 56,61,62,84. Since the size of the system, n, is typically

very large, e.g. n > 105, in the context of design and optimization—in which the

large-scale problem (2.1) needs to be solved repeatedly for many different design

parameters z—it is too computationally expensive to use the original full problem

(2.1). Instead, we seek an approximate solution x̃ within a reduced space Vm. That

is, x̃ ∈ Vm ⊂ IRn where Vm is defined to be the span of some m independent vectors

of IRn, and is called the trial space. We also introduce the test space Wm ⊂ IRn. Let

Φ,Ψ ∈ IRn×m be a basis of Vm and Wm, respectively, and assume ΨTΦ = I, where

I is the identity matrix. For example, Φ contains as columns the basis vectors φi,

i.e., Φ = [φ1 φ2 · · · φm], and is assumed to span the full solution space over a range

of interest of parameters z and unsteady inputs u, i.e. x(z,u, t) ∈ span{Φ}, ∀z ∈

Sz, ∀u ∈ Su where Sz and Su are some subspaces of interest of the parametric and

forcing spaces, respectively. The approximate solution x̃ can be then expressed as

x̃ = Φxr, (2.2)

and the reduced model can be written in matrix form
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Find xr ∈ IRm such that

ΨTR(Φẋr,Φxr, z,u, t) = 0, xr(0) = ΨTx0, yr = P(Φxr, z,u, t), (2.3)

where xr = xr(z,u, t) ∈ IRm is the vector of the coordinates of the approximate

solution x̃ in the reduced basis Φ, and yr ∈ IRq is the approximate output. We have

used the reduced transform (2.2) and the assumption ΨTΦ = I to obtain the initial

condition for the reduced state xr(0). If the test space is the same as the trial space,

i.e. Ψ = Φ, the reduced system (2.3) is obtained via a Galerkin projection. If the

test space is different from the trial space, the reduced system (2.3) is obtained via a

Petrov-Galerkin projection.

Figure 2-1 summarizes the above projection-based reduction method. One starts

with a dynamical system in the full space. The first step is to identify the reduced

basis pair Φ,Ψ, and hence the reduced spaces Vm and Wm. The second step is

to employ the reduced transform (2.2) and to perform the projection to obtain the

reduced dynamical system. Once the reduced state xr is found, the approximate

solution is then reconstructed using the reduced transform (2.2).

Reduced Space Vm

x̃ = Φxr

Full Space IRn

R(ẋ,x, z,u, t) = 0

x(0) = x0

Reduced Transform

x ≈ x̃ = Φxr

Reduced System

ΨTR(Φẋr,Φxr, z,u, t) = 0

xr(0) = ΨTx0

Reduced
bases
Φ,Ψ

Projection

Reconstruction

Figure 2-1: A general projection-based model order reduction.

One of the important tasks of a projection-based model reduction technique is

therefore to find a reduced basis pair Ψ and Φ so that the reduced system (2.3)

provides an accurate representation of the large-scale system (2.1) over the desired

range of inputs and (possibly) parameters.
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Next let us apply the general projection framework to find a reduced model of the

general parametrized LTI dynamical system

E(z)ẋ = A(z)x + B(z)u, y = C(z)x, (2.4)

with initial condition

x(0) = x0, (2.5)

where the matrices E(z),A(z) ∈ IRn×n, B(z) ∈ IRn×p, and C(z) ∈ IRq×n in (2.4)

may depend (possibly nonlinearly) on a set of parameters z; the parameters z could

be coefficients of the PDEs, for example heat conductivities, or shape parameters.

The input vector u(t) ∈ IRp could describe prescribed unsteady boundary motion.

Systems of the form (2.4) that result from spatial discretization of a set of PDEs can

be found in Chapter 5. In this case, the dimension of the system, n, is very large and

the matrices E(z),A(z),B(z) and C(z) result from the chosen spatial discretization

method.

Now denoting the residual as

R(Φẋr,Φxr, z,u, t) = E(z)Φẋr − A(z)Φxr − B(z)u, (2.6)

we apply the above general projection-based model order reduction technique. This

yields the parametrized LTI reduced-order model with state xr(t) and output yr(t)

Er(z)ẋr = Ar(z)xr + Br(z)u, (2.7)

yr = Cr(z)xr, (2.8)

xr(0) = ΨTx0, (2.9)

where Er(z) = ΨTE(z)Φ, Ar(z) = ΨT A(z)Φ, Br(z) = ΨTB(z), Cr(z) = C(z)Φ.

Note that we have performed the projection without discretizing the time derivative

terms, but one could also discretize the time derivative terms first, then perform the

projection on the fully discrete system.
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If, on the other hand, one starts with a full steady system

A(z)x = B(z), y = C(z)x, (2.10)

and defines the residual as

R(Φxr, z) = B(z) − A(z)Φxr, (2.11)

the above projection-based model order reduction technique will yield the reduced

system of the form

Ar(z)xr = Br(z), yr = Cr(z)xr, (2.12)

where again Ar(z) = ΨTA(z)Φ, Br(z) = ΨT B(z), Cr(z) = C(z)Φ. Systems of the

form (2.10) that result from spatial discretization of a set of PDEs can be found in

Chapter 4.

In the following we discuss methodologies to construct the reduced basis Ψ to

obtain a guaranteed stable reduced model for both steady and unsteady problems

that are linear in state vector as in (2.4)–(2.5) and (2.10). Extensions to problems

that are nonlinear in state vector are not addressed in this thesis. Construction of

the basis Φ will be discussed in Chapter 3.

2.2 Construction of the Reduced Test Basis Ψ for

Steady Problems

For steady problems, we first denote e = x−x̃, the state error between the full solution

and the approximation. The ATA−norm is defined as ‖v‖AT A = vTATAv, ∀v ∈ IRn.

From the residual-error relation R(Φxr, z) = Ae, where R is defined in (2.11), it is

easy to see that the following identity is true

‖R‖2 = ‖e‖AT A. (2.13)
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Now if the Galerkin projection, i.e. Ψ = Φ, is employed to find the reduced

state xr, it provides no guarantee on the stability of the reduced model if A is not

symmetric positive definite. (If A is, however, symmetric positive definite one could

prove that the Galerkin projection yields an optimal reduced model in the A−norm,

that is, the state error is minimized in the A−norm.) This is because the reduced

equation (2.12) is obtained by enforcing the residual to be orthogonal to the reduced

space, and hence the residual could be mathematically arbitrarily large while being

orthogonal to the reduced space.

The above discussion suggests that the approximate solution should minimize the

residual in (2.11). In other words, we find the reduced state xr to minimize the

residual. This is a form of the minimum-residual statement in linear algebra and

the finite element contexts [79–81]. Recently, the minimum-residual approach has

been successfully used in the reduced-basis context [84, 85, 88]. Mathematically, the

minimum-residual statement can be expressed in terms of the following least square

minimization

xr = arg min
x̄r∈IR

m
‖R(Φxr, z)‖2

2 = ‖B− AΦx̄r‖
2
2 (2.14)

whose optimality condition, which is the reduced model, is given by

(AΦ)T (AΦ)xr = (AΦ)TB. (2.15)

Next, if we choose the reduced test basis Ψ to be

Ψ = AΦ, (2.16)

then the minimum-residual approach is equivalent to a Petrov-Galerkin projection

with the test space given in (2.16). This particular Petrov-Galerkin projection is

equivalent to Galerkin projection on the normal equation. Moreover, the fact in

(2.13) that the residual 2-norm is exactly the state error in the ATA−norm makes

this particular Petrov-Galerkin projection the best reduction approach in the sense

that the resulting reduced model minimizes the state error in the ATA−norm. It
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should be pointed out that the minimum-residual approach yields the test reduced

basis and the reduced model at the same time. We are now in position to prove the

reduced model (2.15) obtained from the minimum-residual statement, or equivalently

from the Petrov-Galerkin projection (2.16), is guaranteed to be stable.

Theorem 2.1 Assume A has a bounded condition number, then the reduced model

(2.15) is stable in the sense that the state error is bounded. In particular, the following

bound holds

‖e‖2 ≤
1

σA

min

‖R(Φxr, z)‖2 (2.17)

where σA

min is the smallest singular value of A, the reduced state xr is computed from

equation (2.15), and the residual R is defined in (2.11).

Proof: Making use of the inequality for compatible matrix and vector norms on

the error-residual relation e = A−1R and using the definition of the singular val-

ues of a matrix yield the bound (2.17). Since the reduced state found from equa-

tion (2.15) minimizes the residual, the residual is finite (because ‖R(xr, z)‖2 =

min
x̄r∈IR

m ‖R(Φx̄r, z)‖2 ≤ ‖R(Φ0, z)‖2 = ‖B(z)‖2). In addition, 1/σA

min is finite

due to the bounded conditioned number assumption on A. We therefore conclude

that the state error in the 2-norm is bounded. �

A priori convergence results are standard in the context of the finite element

method [2,89], and recently in the reduced basis approach context [56,58–62]. In this

light, we present an a priori convergence result for the above steady reduced model.

Theorem 2.2 As the reduced basis Φ is enriched, i.e. more basis vectors are added,

the approximate solution, hence the reduced model, is improved in the sense that

the state error in the ATA−norm is a non-increasing function of the number of

reduced basis vectors. In particular, there exists m ≤ n at which the state error in the

ATA−norm is strictly monotone decreasing (a linear algebra version of the a priori

convergence result in [56,58–62]).

Proof: Assume Φ ∈ IRn×m is the current reduced basis. Now adding a new basis
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vector φm+1, the new reduced basis Φ̃ is given as

Φ̃ = [Φ, φm+1] ∈ IRn×(m+1). (2.18)

The minimum-residual statement of the new reduced model is given as

x∗
r = arg min

˜̄xr∈IR
m+1

‖B− A[Φ, φm+1]˜̄xr‖
2
2. (2.19)

Comparing the minimization statements (2.14) and (2.19), and using the fact that

span{Φ} ⊂ span{Φ̃} and IRm ⊂ IRm+1, it can be seen that x̄r is a special case of

˜̄xr whose last element is zero. That is, in (2.19), the residual norm is minimized

in a larger space, and hence the residual should be no larger than that of (2.14).

Equivalently, the state error in the ATA−norm is no larger when the reduced space

is richer. Since the approximate solution is exact if m = n, there exists m ≤ n such

that when more basis vectors are added the state error is smaller. �

Note that from the residual-error relation R = Ae and the output error relation

y − yr = Ce, we conclude that as the reduced basis is enriched, the residual and the

output error are also improved. This a priori convergence result is important for the

theoretical development of our adaptive sampling method discussed later in Chapter

3.

2.3 Construction of the Reduced Test Basis Ψ for

Unsteady Problems

For the unsteady problem, we first review mathematically why a reduced model could

be unstable even if the full model is stable. The details of the origin of the instability

can be found in [86, 90] and references therein. To begin, assume E = I and denote

the numerical range of the matrix A as

Γ(A) = {xTAx : ‖x‖2 = 1}. (2.20)
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If A is normal, i.e. AAT = ATA, the numerical range is equal to the convex hull

of the spectrum of A. As a consequence, the reduced matrix ΦTAΦ can never be

unstable, e.g. the reduced solution x̃r does not increase exponentially in time, if A

is stable. However, if A is not normal, the numerical range can extend into the right

half plane (e.g. the reduced matrix has some eigenvalues with positive real parts)

depending on the reduced basis Φ, and hence the reduced matrix could be unstable.

Unfortunately, in most CFD applications, the matrix A is not normal and that is the

reason why the Galerkin projection method can yield an unstable reduced model.

It is well known that there two approaches in optimization. That is, one can

use either the differentiate-then-discretize or discretize-then-differentiate approaches.

Each of these methods has its own advantages and disadvantages; a detailed discussion

of these two approaches in the optimal control context can be found in [91]. In

the following, we discuss the application of the discretize-then-differentiate approach

together with the minimum-residual statement in Section 2.2 to find a test reduced

basis Ψ and at the same time a reduced model for time-dependent problems.

In the discretize-then-differentiate approach, one first discretizes the time deriva-

tive of the full model. A suitable optimization problem is then constructed and

differentiated to find the optimality condition. The optimality condition is solved to

find an approximate optimizer.

Now, without loss of generality, assume that the Backward-Euler method is used

to discretize the time-dependent terms of equation (2.4), the full model is now given

as

(E − ∆tA)xk = Exk−1 + ∆tBuk, k = 1, . . . , nt, (2.21)

where k denotes the time level, ∆t is the time step, and nt is the number of time

steps. Next, denote the residual at time step k as

Rk = (E − ∆tA)x̃k − Ex̃k−1 − ∆tBuk, (2.22)

where x̃k = Φxk
r is the approximation at the kth time step, and xk

r is the corresponding

reduced state vector.
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Similar to the minimum-residual statement in Section 2.2, all the residuals are

minimized simultaneously as

min
x1

r,...,xn+1
r ∈IRm

nt∑

k=1

‖Rk‖2
2 =

nt∑

k=1

‖(E − ∆tA)Φxk
r − EΦxk−1

r − ∆tBuk‖2
2. (2.23)

This is equivalent to stacking up the residuals at all time steps into a single long

residual vector. Symbolically, the residual equations can be written as











R1

R2

...

Rnt











︸ ︷︷ ︸

R̄

=











−∆tBu1 − EΦx0
r

−∆tBu2

...

−∆tBunt











︸ ︷︷ ︸

B̄

−











Q

E Q

. . .
. . .

E Q











︸ ︷︷ ︸

Ā











Φ

Φ

. . .

Φ











︸ ︷︷ ︸

Φ̄











x1
r

x2
r

...

xnt
r











︸ ︷︷ ︸

x̄r

(2.24)

where Q = − (E − ∆tA), and blank entries in matrices Ā and Φ̄ mean zero blocks.

The minimum-residual problem (2.23) is equivalent to the following minimum-residual

problem

min
x̄r

‖R̄‖2
2 = ‖B̄ − ĀΦ̄x̄r‖

2
2, (2.25)

where R̄, B̄, Ā and Φ̄ are defined in (2.24). Next, setting the first derivative of the

residual norm ‖R̄‖2
2 with respect to x̄k

r to zero, we obtain the reduced equations

[(E − ∆tA)Φ]T Rk − (EΦ)TRk+1 = 0, k = 1, ..., nt − 1, (2.26)

[(E− ∆tA)Φ]T Rnt = 0, (2.27)

which can be viewed as a weighted Petrov-Galerkin projection in which two different

test reduced spaces (E− ∆tA)Φ and EΦ are used for the residual at two successive

time steps. In matrix form, the reduced equations have the following symmetric block
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tri-diagonal form











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D H DT 0 . . . . . . . . .

0
. . .

. . .
. . .

. . . . . . . . .

. . . 0 D H DT 0 . . .
...

...
. . .

. . .
. . .

. . .
. . .

. . . . . . . . . 0 D H DT
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
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
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

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

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
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x2
r
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r
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r
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r


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




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
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






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

F1

F2

...

Fk

...

Fnt−1

Fnt




















(2.28)

where

H = [(E − ∆tA)Φ]T [(E − ∆tA)Φ] + ΦTETEΦ, (2.29)

H̄ = [(E − ∆tA)Φ]T [(E − ∆tA)Φ] , (2.30)

D = − [(E − ∆tA)Φ]T (EΦ), (2.31)

F1 = [(E − ∆tA)Φ]T (EΦx0
r + ∆tBu1) − (EΦ)T (∆tBu2), (2.32)

Fk = [(E − ∆tA)Φ]T (∆tBuk) − (EΦ)T (∆tBuk+1), k = 2, ..., nt − 1, (2.33)

Fnt = [(E − ∆tA)Φ]T (∆tBunt). (2.34)

It can be seen that the residual equation (2.24) and the minimum-residual state-

ment (2.25) have exactly the same form as the steady residual equation (2.11) and

the minimum-residual statement (2.14), respectively. As a result, all the results in

Section 2.2 hold for reduced models of unsteady problems using the method in this

section as well. In particular, the stability of the form (2.17) and a priori convergence

result as in Theorem 2.2 hold.

However, even though the system (2.28) is sparse, its size, m × nt, can be large,

because even if the number of reduced states m is moderate, the number of time

steps nt could be very large. In that case, an efficient algorithm must be derived

to solve this symmetric block tri-diagonal system to find the reduced state vectors.

Therefore, while this method is of theoretical interest (because it provides an a priori
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convergence result which is useful for the theoretical developments of our adaptive

sampling approach in Chapter 3), in practice we minimize the residuals sequentially.

That is, the residual at the first time step is minimized to determine the reduced state

at the first time step. Once the reduced state at the first time step is computed, the

residual at the second time step is minimized to determine the reduced state at the

second time step. This process is repeated until the reduced state at the final time

step is computed. In particular, minimizing the residual at the kth time step yields

the corresponding reduced equation at that time step as

[(E − ∆tA)Φ]T Rk = 0 (2.35)

which can be seen to be obtained via a Petrov-Galerkin projection with the test

reduced basis as Ψ = (E − ∆tA)Φ. The main advantage of this approach is that

the reduced equations at each time step are decoupled, and hence are easy to solve.

We do not yet have a priori convergence result as in Theorem 2.2, though numerical

results, as we will present in Section 6.1, justify this convergence.
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Chapter 3

Model-Constrained Greedy-Based

Adaptive Sampling Approaches for

Parameter-Dependent Problems

We have discussed methodologies to compute a good test reduced basis in Chapter

2. In this chapter we propose approaches to find a good trial reduced basis. In par-

ticular, we develop a model-constrained greedy-based adaptive sampling method for

model reduction of large-scale problems that depend on a large number of param-

eters. First, the model-constrained adaptive sampling concepts, and corresponding

mathematical formulations are presented. A solution methodology for the greedy

optimization problem, which is one of the key components of the model-constrained

adaptive sampling approach, is also discussed. An analysis of the proposed adaptive

sampling approach is then carried out. Finally, the greedy optimization problem and

its first order optimality conditions are derived for steady and unsteady problems

that are linear in the state vector.
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3.1 Model-Constrained Greedy-Based Sampling Ap-

proach

Recall that our model reduction task is one of determining an appropriate reduced

basis that spans both the parametric input space z and the space of unsteady inputs

u(t). In the case of the dynamical system (2.1) with no dependence on parameters z,

a number of model reduction techniques can be used, such as Krylov-based methods

and POD. In these methods, the reduced basis is formed as the span of a set of

state solutions, commonly referred to as snapshots. These snapshots are computed

by solving the full system for selected values of the parameters and selected forcing

inputs (possibly selected frequencies if a Krylov-subspace method is used). In order

to extend these techniques to the general case where the system matrices depend on

the parameters z, we require a systematic method of sampling the parametric input

space, and the forcing input space as well.

3.1.1 Greedy Adaptive Sampling Concept

A recently proposed approach to address the challenge of sampling a high-dimensional

parameter space to build a reduced basis is the greedy algorithm [56, 58, 62, 63].

The greedy algorithm adaptively selects snapshots by finding the location in a pre-

determined discrete parameter set (training parameter set) where an output error

bound, i.e. an upper bound of the error between the full and the reduced outputs,

is maximal, updating the basis with information gathered from this sample location,

forming a new reduced model, and repeating the process.

Here, we formulate the greedy approach as an optimization problem that targets

an error estimation (which could be an output error indicator, an output error bound,

or the true output error) of reduced model output prediction. The optimization prob-

lem is defined by introducing as constraints the systems of equations representing the

reduced model (and possibly the full model if the true output error is targeted). The

optimization formulation treats the parameter space as continuous; that is, we do not
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require a priori selection of a discrete training parameter set. As a result, instead

of finding globally-optimal parameter points in the training set, our method seeks to

find locally-optimal parameter points in the continuous parameter space. Further,

since any error estimation can be used as our selection criteria, our approach is appli-

cable in cases for which output error bounds are unavailable. We use state-of-the-art

optimization techniques to solve the resulting greedy PDE-constrained optimization

problem.

3.1.2 Greedy Optimization Problem

In each cycle of the greedy algorithm, the key step is to determine the location in

parameter space where the error in the reduced model is maximal. For the sake

of clarity, we first discuss sampling methods in the parameter space, and then ad-

dress sampling approaches for the unsteady forcing input space. We define the cost

functional as a function of the output error norm

G(x,xr, z) =
1

2
‖y − yr‖

2
O, (3.1)

where the appropriate definition of the output error norm ‖ · ‖O for steady and un-

steady problems will be discussed later. Given a current basis Φ, we find the location

in parameter space of maximum output error by solving the optimization problem

max
x,xr,z

G =
1

2
‖y − yr‖

2
O (3.2)
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subject to

R(ẋ,x, z,u(t), t) = 0, (3.3)

x(0) = x0, (3.4)

y = P(x, z,u(t), t), (3.5)

ΨTR(Φẋr,Φxr, z,u(t), t) = 0, (3.6)

xr(0) = ΨTx0, (3.7)

yr = P(Φxr, z,u(t), t), (3.8)

zmin ≤ z ≤ zmax, (3.9)

where zmin and zmax are respectively lower and upper bounds on the parameter vector

z. Since the true output error—the error between the full and the reduced outputs—

has been used as the cost functional, both the full model (3.3)–(3.5) and the reduced

model (3.6)–(3.8) are constraints of the optimization problem.

To solve the optimization problem (3.2)–(3.9), each optimization iteration may

be expensive, because the constraints include the full model. If an output error

bound [60–62, 84] exists, it could be used as the cost functional instead of the true

output error. In that case, the constraints only comprise the reduced model and the

bound constraints. As a result, solving the optimization problem in this case is much

less expensive since it involves no full system solves. However, for a general problem,

an error bound may not be available. Alternatively, an error indicator, for example

the square of the 2-norm of the residual, ‖R(Φẋr,Φxr, z,u, t)‖2
2, could be employed

(note that for problems that result from spatial discretization of a set of PDEs one

can use the dual norm as in Section 4.3.1 or any weighted-residual forms). In such

cases, denote the output error bound or the norm of the residual as Q(xr, z,u, t); the

optimization problem now reads

max
x,xr,z

G = Q(xr, z,u, t) (3.10)
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subject to

ΨTR(Φẋr,Φxr, z,u(t), t) = 0, (3.11)

xr(0) = ΨTx0, (3.12)

zmin ≤ z ≤ zmax. (3.13)

From now on to the end of this chapter, theoretical results will be developed based

on the optimization problem using the true output error, (3.2)–(3.9). However, by

removing the full model constraint and using Q(xr, z,u, t) instead of 1
2
‖y − yr‖

2
O in

the cost functional, the results also hold for the optimization problem (3.10)–(3.13).

We denote the parameter vector that solves the maximization problem (3.2)–(3.9)

by z∗. Next, we compute the solution x(z∗, t) of the full system at the worst-case

parameter value z∗. This solution information is added to the basis Φ, for example

using the POD (note that once the sample location has been found, other model

reduction methods could also be employed). The procedure is then repeated by

solving the optimization problem (3.2)–(3.9) with the updated basis Φ. Thus, we are

using a systematic, adaptive error metric based on the ability of the reduced-order

model to capture the outputs of interest in order to choose the snapshot locations that

are locally the worst case scenarios. This adaptive sampling approach is summarized

in the following algorithm.

Algorithm 3.1 Model-Constrained Adaptive Sampling Procedure

1. Given a reduced basis Φ and initial guess z0, solve the optimization problem

(3.2)–(3.9) to find the location in parameter space at which the error is maxi-

mized, i.e. find z∗ = arg maxG(z).

2. If G(z∗) < ǫ, where ǫ is the desired level of accuracy, then terminate the algo-

rithm. If not, go to the next step.

3. With z = z∗, solve the full system (3.3) to compute the state solutions x(z∗, t), t =

(0, tf),where tf is some time horizon of interest. Use the span of these state so-

lutions to update the basis Φ such that G(z∗) < ǫ. Go to Step 1.
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3.1.3 Solution of the Greedy Optimization Problem

In order to reduce the offline cost of deriving the reduced model, we would like to

minimize the cost of solving the greedy optimization problem, especially when large-

scale system equations appear as constraints in (3.3). Therefore, it is important to

use an efficient optimization algorithm that allows us to exploit the structure of the

system. In order to solve the constrained optimization problem (3.2)–(3.9), we choose

to solve an equivalent bound-constrained optimization problem in the z variables by

eliminating the state variables x and xr. That is, we replace maxx,xr,z G(x,xr, z) with

maxz G(x(z),xr(z), z) = maxz G(z), where the dependence of x and xr on z is implicit

through the full equation (3.3) and reduced state equation (3.6) (of course we assume

that the full and the reduced equations are well defined in the sense that given a

parameter vector z we can solve for the full and the reduced states). Explicitly, the

bound constrained optimization reads

max
z

G(z) (3.14)

subject to

zmin ≤ z ≤ zmax. (3.15)

While the bound-constrained optimization problem (3.14)–(3.15) is small, in the sense

that the number of optimization variables is small relative to the size of the state,

it may still be expensive to solve. This is because solution of the large-scale system

(3.3)–(3.5) is still required at each iteration of the optimization solver.

In the literature, there are several methods to solve the above bound-constrained

optimization problem [92–101]. In particular, the method of Coleman-Li [98,99], and

its extensions [95–97, 100, 101] are used here. Since our main goal is to make the

cost of solving the optimization problem as small as possible, in the following we will

combine the modified Coleman-Li scaling developed by Heinkenschloss et al. [95] and

the subspace trust region interior reflective method in [101].
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The first order necessary optimality system for the bound constrained problem

(3.14)–(3.15) can be written in the following form

D(z)∇G(z) = 0, (3.16)

where the diagonal elements of the Coleman-Li diagonal scaling matrix D are given

by

Dii(z) = DCL
ii (z) =







zi − zi
min if ∇Gi > 0

zi
max − zi if ∇Gi < 0

min{zi − zi
min, zi

max − zi} otherwise

, (3.17)

and ∇Gi denotes the gradient of G with respect to zi.

Next the Newton step for (3.16) at a current optimization point, zk, can be written

as

M(zk)s = −D(zk)∇G(zk), (3.18)

where s is the Newton step, and M = D∇2G +diag(|∇Gi|). Heinkenschloss et al. [95]

show that the Coleman-Li scaling yields linear convergence for degenerate cases, i.e.

|∇Gi| = 0 if z∗i ∈ {zi
min, zi

max}. To overcome this, they propose modified Coleman-Li

scalings given as

Dii(z) =







DCL
ii (z) if |∇Gi| < min{zi − zi

min, zi
max − zi}

p or

if min{zi − zi
min, zi

max − zi} < |∇Gi|
p

1 otherwise

(3.19)

for some p > 1.

The Coleman-Li scaling approach enables us to use the subspace trust region

interior reflective Newton framework, proposed in Branch et al. [101], to solve the

resulting bound-constrained optimization problem efficiently. The subspace trust

region subproblem we need to solve is given as

min
s∈IRd

{ϕk(s) : ‖Ds‖2 ≤ ∆k, s ∈ Sk}, (3.20)
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where d is the number of parameters, ∆k is the current trust region radius whose

updating rule can be found in [101], and the merit function ϕk(s) is given as

ϕk(s) = sT∇G +
1

2
sTD−1Ms. (3.21)

We use the conjugate gradient (CG) method to determine the subspace Sk in which

the inexact Newton step s is found. We terminate the CG subroutine when either

of the two following conditions is satisfied: (1) a negative curvature direction is en-

countered; or (2) the norm of the residual of the Newton system is brought down

to a sufficiently small value relative to the norm of the gradient. The subspace Sk

is then constructed from the gradient and the output of the CG solver. Finally, the

subspace trust region subproblem (3.20) is solved. This method combines the rapid

locally-quadratic convergence rate properties of Newton’s method, the effectiveness

of trust region globalization for treating ill-conditioned problems, and the Eisenstat-

Walker idea of preventing oversolving [102]. In addition, this method has been nu-

merically demonstrated [101] to lead to faster convergence since it better captures

the negative curvature information than does the conventional inexact Newton-CG

method [103,104].

The gradient of G with respect to z, as required by the trust region subproblem,

can be computed efficiently by an adjoint method which will be developed in detail

for the steady and unsteady problems in the following subsections. The Hessian-

vector product as required by CG is computed on-the-fly; because it is a directional

derivative of the gradient its computation similarly involves solution of state-like and

adjoint-like equations. Therefore, the optimization algorithm requires solution of a

pair of state and adjoint systems at each CG iteration. Below is the summary of the

optimization algorithm.

Algorithm 3.2 Bound-Constrained Optimization Solver

1. At the current Newton step zk, compute the gradient ∇G(zk) (requires a pair of

full forward and full adjoint solves, and one pair of reduced forward and reduced

adjoint solves).
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2. Compute the subspace Sk (each CG iteration requires a pair of full forward- and

adjoint-like solves, and a pair of reduced forward- and adjoint-like solves).

3. Solve the trust region subproblem (3.20).

4. Compute the following quantity

ρ =
G(zk + s) − G(zk)

ϕk(s)
. (3.22)

5. If ρ > ν, where ν < 1, then set zk+1 = zk + s and ∆k+1 = 2∆k. Otherwise, set

zk+1 = zk and ∆k+1 = 0.5∆k. Go to Step 2.

Note that a very simple updating rule for zk and ∆k is given in Step 5 of Algorithm 3.2

for simplicity of the exposition. In practice, a sophisticated updating rule similar to

that of Branch et al. [101] is used. Algorithm 3.2 is repeated until some stopping

criterion is met, for example, when the norm of the scaled gradient ‖D∇G‖2 is less

than some given tolerance τ .

Since the system dependence on the parameter z is nonlinear, in the general case

the optimization problem (3.2)–(3.9) is non-convex. In particular, as the greedy

algorithm progresses we expect the cost functional to become increasingly multi-

modal, since the error function will be close to zero (below the tolerance ǫ) at each

of the previous parameter sample locations. It should be noted that, while finding

the global maximum is obviously preferred, convergence to a local maximum is not

necessarily an adverse result. Solving the greedy optimization problem is a heuristic

to systematically find “good” sample points; at a local maximum the error is (locally)

large. The stopping criterion applied in Step 2 of Algorithm 3.1 monitors G(z∗), the

reduced model error associated with the optimal solution z∗. It is important to note

that if G(z∗) falls below the desired error level, this guarantees only that the local

error between full and reduced model is sufficiently small. Due to the non-convexity

of the optimization problem, it is possible that larger errors may exist elsewhere in

the parameter space.
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3.1.4 Computational Complexity

In this section, we will approximate the cost, in terms of flop counts, of the model-

constrained adaptive sampling procedure, Algorithm 3.1. In order to compute the

cost, it is helpful to point out that the adaptive sampling procedure involves two

main loops. The outer loop runs through the number of greedy cycles, for which

Algorithm 3.1 shows one cycle. The inner loop runs through the number of Newton

steps, one instance of which is given by Algorithm 3.2. The CG loop, which is inside

the inner loop occurring in Step 2 of Algorithm 3.2, is an additional loop which is not

shown here. The cost estimation will be only given for steady problems of the form

(2.10), but the extensions to problems that are nonlinear in the state vector, and to

unsteady problems are straightforward. We further assume that only the matrix A

depends on the parameters z and is given by the following affine decomposition

A(z) =

nΘ∑

i=1

Θi(z)Ai, (3.23)

where Ai does not depend on z and Θi is some scalar function of z. Finally, all the

trial iterates, zk + s, are assumed to satisfy ρ > ν in Step 5 of Algorithm 3.2. (In

the case that this condition is not satisfied, the cost will be slightly increased due to

additional Hessian-vector products in Step 2 and additional solves in Step 4, because

one has to restart Step 2 of Algorithm 3.2 with smaller trust region radius.)

The order of approximating the cost is as follows. The cost of each Newton step

is first approximated, which is then summed over all Newton steps to form the cost

for each greedy cycle. The total offline cost is then the sum of the cost of all greedy

cycles.

In order to solve the full model, we use the state-of-the-art direct sparse solver

UMFPACK [105–108]. Since we consider problems that are linear in the state vector,

we can perform the LU factorization of the full matrix at the beginning of Step

1 of Algorithm 3.2, and then use the full LU factors for the full forward and full

adjoint solves and all subsequent full forward- and adjoint-like solves required by the

CG method within that Newton step. Similarly, the LU factorization for the reduced
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model needs to be computed once at the beginning of Step 1 of Algorithm 3.2, and the

LU factors can be then used for the reduced forward and reduced adjoint solves and

all subsequent reduced forward- and adjoint-like solves required by the CG method.

Table 3.1 shows the cost in terms of flop counts for each instance of Algorithm 3.2

(each Newton step). At the beginning of Step 1 of Algorithm 3.2, we need one full LU

factorization, and its cost is O(LUF
f ), where LUF

f is the number of multiplicative flops

(* and /) [109]. The number of triangular solves for each forward (or each adjoint

solve) is one (it is nt, the number of timesteps, for unsteady problems). At the end

of Step 1, we need two (one forward and one adjoint) triangular solves. Denote the

number of Hessian-vector products in Step 2 as nHv (which is at most d for the CG

method in exact arithmetic) which is assumed to be the same for all instances of

Algorithm 3.2. Since each CG iteration requires one pair of full forward- and adjoint-

like solves, the number of triangular solves for the CG solver is 2nHv. As a result,

we have a total of 2(nHv + 1) triangular solves for one instance of Algorithm 3.2; the

total cost for all triangular solves is therefore 2(nHv + 1)O(LUF
s ), where LUF

s is the

number of flop counts for each triangular solve. Similarly, the flop counts related to

the reduced model are shown in Table 3.1. Since the reduced model is dense, the

explicit flop counts for LU factorization and triangular solve are available in terms of

the reduced model size mj , where j denotes the jth greedy cycle.

Table 3.1: Cost in terms of flop counts for the bound-constrained optimization solver
for each Newton step for steady problems. The true error is used as the cost functional.

LU-factorization Triangular solves
Number Cost Number Cost

Full 1 O(LUF
f ) 2(nHv + 1) O(LUF

s )

Reduced 1 O(2
3
m3

j ) 2(nHv + 1) O(m2
j )

The numerical experiments in Sections 4.3.2 and 6.2 suggest that the number of

Newton steps, and hence the number of instances of Algorithm 3.2, scales linearly

with the number of parameters; we therefore assume the number of Newton steps to

be O(d). As a result, the offline cost (flop counts) of computing a reduced basis with
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m basis vectors after nG greedy cycles, excluding the cost of forming the reduced

model and the cost of computing the reduced basis at each greedy cycle, scales as

CostTE ∼ O









d

nG∑

j=1

2

3
m3

j + 2(1 + nHv)m
2
j

︸ ︷︷ ︸

costR

+ dnG[LUF
f + 2(1 + nHv)LUF

s ]
︸ ︷︷ ︸

costF









, (3.24)

where costR and costF denote the cost incurred by solving the intermediate reduced

model and by solving the full model, respectively, during the adaptive sampling pro-

cess.

The offline cost in terms of flop counts in (3.24) is for the model-constrained

adaptive sampling method with the greedy optimization problem of the form (3.2)–

(3.9), that is, the true error is used as the sampling selection criteria. For the adaptive

sampling method with an error indicator, such as the residual norm, the offline cost

is given by

CostIE ∼ O









d

nG∑

j=1

2

3
j3 + 2(1 + nHv)j

2

︸ ︷︷ ︸

costR

+ nG(LUF
f + LUF

s )
︸ ︷︷ ︸

costF









, (3.25)

which involves only nG full system solves at nG worst-case sampling points. Since

only one snapshot at the optimal point is computed in this case, only one basis vector

is added to the current reduced basis. As a result, mj is equal to j at the end of the

jth greedy cycle. It can be seen that if the costs of the full LU factorization and full

triangular solves dominate the other costs, the error-indicator approach is much less

expensive than the true-error approach per greedy cycle.

If a good preconditioner for the CG solver is available so that the number of

Hessian-vector products nHv does not depend on the number of parameters d, the

offline cost of constructing reduced basis vectors in each greedy cycle scales linearly

with the dimension of the parameter space, d. This is clearly important as the dimen-

sion of the parameter space increases. If, in addition, the size of the reduced basis is
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constrained to be fixed, and hence the number of greedy cycles, nG, is fixed, it can be

also proved that the total offline cost of constructing the reduced basis scales linearly

with the dimension of the parameter space. However, if nG is allowed to increase

until Algorithm 3.1 terminates, it will likely depend on the dimension of the param-

eter space, i.e. it might be expected that larger input spaces require more sample

points, and therefore larger reduced basis size, as well on complexity of dependence of

outputs on parameters. In that case, the total offline cost of constructing the reduced

basis no longer scales linearly with the dimension of the parameter space.

It should be pointed out that in general there exists no good explicit approx-

imation for O(LUF
f ) (or O(LUF

s )) (of course a very conservative upper bound is

O(2
3
n3) for O(LUF

f ) and O(2n2) for O(LUF
s ) from dense matrix theory). How-

ever, for any well-shaped finite element mesh [109, 110], the flop counts can be

approximated as O(LUF
f ) + O(LUF

s ) = O(n3/2) for two-dimensional problems and

O(LUF
f ) +O(LUF

s ) = O(n2) for three-dimensional problems. Furthermore, the stor-

age requirement for the LU factors is O(nlogn) for two-dimensional problems and

O(n4/3) for three-dimensional problems. Therefore, for three-dimensional problems, a

direct solver may not be possible, and an iterative sparse solver is an alternative [111].

To estimate the cost of forming the reduced model after each adaptive cycle, we

first consider the error-indicator approach for simplicity. The discussion for the cost

estimation of the true-error will then follow. Since the matrix A is assumed to be of

the form (3.23), we compute the cost of forming the reduced model explicitly. From

the reduced equation (2.15), the reduced matrix is given as

Ar =

nΘ∑

k=1

nΘ∑

l=1

Θk(z)Θl(z)ΦTAT
k AlΦ, (3.26)

which suggests that we need to compute and store the matrices

Akl
r = ΦTAT

k AlΦ. (3.27)

It should be noted that the dimension of the reduced matrix Akl
r computed at the
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end of the (j + 1)th cycle is (j + 1) × (j + 1), but its j × j principle submatrix is

the reduced matrix at the end of the jth cycle. Therefore, one only needs to update

the (j + 1)th row and (j + 1)th column of Akl
r after the (j + 1)th greedy cycle. Next,

denote nnz to be the number of nonzeros of Ai, and assume it is the same for all Ai.

To compute the first j elements of the (j + 1)th column, we need to compute

ΦTAT
k AlΦj+1, (3.28)

where Φj+1 is the new basis vector computed at the end of the (j +1)th cycle. Multi-

plying from right to left, the cost is approximately given as 2jn+2nnz, which is also

the cost of computing the first j elements of the (j + 1)th row. Finally, the cost of

computing the (j + 1)th element of the (j + 1)th column is given as 2n + 2nnz. The

total cost of updating the reduced matrix Akl
r is given as 2(2j+1)n+6nnz. Therefore

the total cost to compute all the reduced matrices at the end of the (j + 1)th greedy

cycle is given as

n2
Θ[2(2j + 1)n + 6nnz], (3.29)

and the corresponding storage requirement is n2
Θ(j+1)2. It can be seen that, depend-

ing on nΘ, j, n, and nnz, the cost of computing the intermediate reduced matrices

can form a considerable portion of the total offline cost.

For the true-error case, the cost of forming the reduced model after each greedy

cycle is the same as that of the error-indicator case if only the snapshot at the optimal

parameter point is used to update the reduced basis. However, as will be discussed in

Section 3.1.6, the size of the reduced model depends on how we update the reduced

basis, and hence the cost could be slightly increased. Nonetheless, the procedure for

estimating the cost of forming the reduced basis is similar.

It must be also mentioned that computing reduced basis vectors and using them

to update the reduced basis can take a considerable amount of time (due to dense

linear algebra operations on these dimension n reduced basis vectors) and storage,

depending on how many basis vectors are generated and on the size of the full model,

n.
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3.1.5 Initialization

Initially, there are no basis vectors in the reduced basis; it is therefore natural to

choose the initial basis as the empty set, Φ = ∅, and the reduced model is a zero-

order approximation of the full model.

It should be also pointed out that the Algorithm 3.2 starts with an initial guess

z0 in the parameter space and moves iteratively towards a local maximizer. To

avoid convergence to a local maximum close to a previous sample location, and hence

to explore the parameter space better, a random initialization of the optimization

variables z is used. An initial guess is accepted only if it is “far enough” away from

the previous sample locations and its corresponding cost functional is larger than

ǫ. In particular, the smallest allowable distance between an initial guess and all the

existing sample locations is chosen, for example, to be 0.5 mini{z
i
max − zi

min}.

3.1.6 Updating the Reduced Basis

Recall that the purpose of Algorithm 3.1 is to sample the (locally) optimal parameter

points in the parameter space. Therefore, the snapshots at these optimal sample

locations are important, and it is natural to use these snapshots to update the reduced

basis as proposed in Step 3 of Algorithm 3.1. However, if the true output error is used

as the cost functional, besides the snapshots computed at the optimal solutions, the

solution snapshots and the adjoint solutions at each Newton step are also available

as part of the optimization process; although these snapshots may not add much

information as those at the optimal parameters, they can be used to improve the

reduced basis. Given all these snapshots, some approaches to update the reduced

basis are given as follows

1. Use only the snapshots at the optimal parameter points, z∗, to update the

reduced basis, for example, using the Gram-Schmidt procedure.

2. Store all snapshots, and then perform the POD method on the complete snap-

shot set, which comprises those of the current greedy cycle and all previous ones.

For large-scale problems, this approach is, however, expensive both in terms of
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storage and in terms of computing time. A less expensive approach is first to

perform the POD method on just the snapshots of the current greedy cycle in

order to extract dominant POD basis vectors. These dominant POD vectors are

then added to the current reduced basis using Gram-Schmidt orthogonalization.

Another approach is to perform a second POD computation on the snapshot set

comprising the current reduced basis and the newly computed POD vectors. In

that case, since the POD basis vectors are of unit length, an appropriate scaling,

for example using the corresponding singular values, needs to be done before the

second POD computation. Otherwise, the important information compressed

in the dominant POD vectors of the current reduced basis and of the POD basis

of the current greedy cycle, may be lost, resulting in a reduced basis that is poor

in quality.

3. Add all snapshots of the current greedy cycle to the current reduced basis

using Gram-Schmidt orthogonalization. However, care must be taken since this

method potentially makes both the offline and the online stages expensive due

to a large number of vectors in the reduced basis. Yet, the reduced model may

not be accurate because not all the snapshots are important.

4. Solve an (inner) optimization problem to find the basis that minimizes the

output error at the sample points at which the snapshots are computed [112].

If the error indicator is used, only snapshots at the optimal parameter points

are computed. As a result, if the number of optimal parameter points, and hence

the number of snapshots, is small, one can simply use the first updating approach,

as discussed above. However, if the number of snapshots is large, all the above

approaches can be employed.
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3.2 An Analysis of the Adaptive Sampling Ap-

proach

We have proposed an adaptive sampling method for parameter-dependent problems

in Section 3.1. Recall that the optimization problem in each adaptive sampling pro-

cedure is a PDE-constrained optimization problem. As a result, the question arises

under what conditions the adaptive sampling procedure works. In particular, we need

to answer the following questions: 1) Does the PDE-constrained optimization prob-

lem in each adaptive cycle have a solution? 2) If it does, is the solution unique? That

is, the existence and uniqueness of the solution of the optimization problem need to

be addressed.

3.2.1 Existence and Uniqueness of a Maximizer in Each Adap-

tive Cycle

In this section, we prove that a solution of the optimization problem (3.14)–(3.15), and

hence the optimization problem (3.2)–(3.9) or (3.10)–(3.13), exists, and discuss the

uniqueness of that solution. To begin, let us recall one of the fundamental theorems

about continuous functions.

Theorem 3.1 If G(z1, . . . , zd) : Ω ⊂ IRd → IR is continuous and Ω is a compact

subset of IRd, then there is a maximum point z̄ ∈ Ω such that G(z) ≤ G(z̄), ∀z ∈ Ω.

Proof: The proof can be found, for example, in [113]. �

This theorem shows that the greedy optimization problem in each adaptive cycle

has at least one solution by the following corollary.

Corollary 3.1 In each adaptive cycle, assume that the cost functional is a continuous

function in the parameter z, then there exists at least one solution for the optimization

problem (3.14)–(3.15).

Proof: Denote Ω to be the parameter set defined by the bound constraints (this is

called a d-cell in mathematics [113]). Then, it can be proved that a d-cell is compact
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(the proof requires a few other theorems in set topology study and therefore we simply

use this result).

On the other hand, the states are eliminated so that the cost function G(z) is

only a function of the parameter z. Therefore, if cost functional G(z) is a continuous

function on Ω, Theorem 3.1 applies and Corollary 3.1 is proved. That is, there exists

a solution (a global maximizer according to the theorem) to the optimization problem

(3.14)–(3.15) in each adaptive cycle. �

Clearly uniqueness is not guaranteed in the general case since there could be many

global maximizers.

3.2.2 Properties of the Adaptive Sampling Approach

Next, some important properties of the adaptive sampling approach will be discussed.

Theorem 3.2 Assume that the full model is linear in state x. Then, in the kth

adaptive cycle, the cost functional is less than ǫ at all the maximizers found in the

previous cycles k̄ < k.

Proof: Recall that in Step 3 of Algorithm 3.1 the span of the state solutions at the

local maximizers found in previous cycles k̄ < k are used as basis vectors such that

the cost functional at these local maximizers is less than ǫ. Furthermore, we proved

in Chapter 2 that, for problems that are linear in state x, as the reduced basis is

enriched, the reduced model error cannot increase. As a result, the cost functional in

the kth adaptive cycle is less than ǫ at all the maximizers found in the previous cycles

k̄ < k. �

As a consequence of the above theorem, the below corollary is an important result

for the adaptive sampling approach.

Corollary 3.2 Assume that the full model is linear in state x. Then, the adaptive

sampling approach will never sample at the previous sampled points in the parameter

space.
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Proof: By definition in (3.2), the cost functional is non-negative. To prove the

corollary, it is sufficient to show that in the kth adaptive cycle the maximizer must be

different from the maximizers found in the previous cycles. First, recall that the cost

functional in the current adaptive cycle is smaller than ǫ at all previous maximizers,

as proved in Theorem 3.2. Second, we only start at an initial guess where the cost

function is greater than ǫ. Third, the optimization solver only accepts an iterate

if the cost functional is larger than that at the previous iterate. Using these three

facts we conclude that the cost functional at a new maximizer must be larger than ǫ.

Therefore, the maximizer found in the kth adaptive cycle must be different from the

previous maximizers. �

Even though we do not yet have proofs that the results in this section are true

for general problems that are nonlinear in both state and parameters, this is not a

severe limitation if, for example, one uses the empirical interpolation method [61,62,

68,69,114,115] to pre-process the nonlinear terms by a linear combination of empirical

interpolation basis functions. In that case, the results in this section still apply for

the pre-processed model. Of course, if one can also prove that, for a problem at hand

that is nonlinear in state x, the reduced model is improved as the reduced basis is

enriched, both Theorem 3.2 and Corollary 3.2 also hold for that nonlinear problem.

We next derive the optimization problem in each adaptive cycle and its optimality

system for a class of steady and unsteady problems that are linear in the state vector,

but depend nonlinearly on the parameters.

3.3 Steady Problems

Consider a general large-scale parameter-dependent steady problem that is linear in

the state vector x

A(z)x = B(z); y = C(z)x, zmin ≤ z ≤ zmax. (3.30)
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As discussed in Section 2.1, a projection-based model order reduction technique yields

the reduced system of the form

Ar(z)xr = Br(z); yr = Cr(z)xr, zmin ≤ z ≤ zmax, (3.31)

where Ar(z) = ΨT A(z)Φ, Br(z) = ΨTB(z) and Cr(z) = C(z)Φ. Note that the full

and the reduced models were given in (2.10) and (2.12); they are repeated here for

clarity. Next, define the cost functional

G(x,xr, z) =
1

2
‖y − yr‖

2
O =

1

2
‖y − yr‖

2
2, (3.32)

which describes the output error between the full and the reduced models. Here,

‖ · ‖2 is the Euclidean 2-norm (any weighted combination of the outputs could be

used instead). The greedy optimization problem in each adaptive cycle then reads

max
x,xr,z

G =
1

2
‖C(z)x −Cr(z)xr‖

2
2, (3.33)

subject to

A(z)x = B(z), (3.34)

Ar(z)xr = Br(z), (3.35)

zmin ≤ z ≤ zmax. (3.36)

The optimality conditions for the constrained optimization problem (3.33)–(3.36)

can be derived by defining the Lagrangian functional

L(x,xr, z, λ, λr) = G(x,xr, z) + λT [A(z)x− B(z)]

+ λT
r [Ar(z)xr − Br(z)] , (3.37)

where λ ∈ IRn and λr ∈ IRm are the full and the reduced adjoint variables that respec-

tively enforce the full and the reduced equations. Note that the bound constraints are
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excluded and treated separately as in Section 3.1.3. The first-order Karush-Kuhn-

Tucker optimality system can be derived by taking derivatives of the Lagrangian with

respect to the adjoints, states, and parameter as follows:

• Setting the derivative of the Lagrangian with respect to λ to zero yields the full

equations (3.34).

• Setting the derivative of the Lagrangian with respect to λr to zero yields the

reduced equations (3.35).

• Setting the derivative of the Lagrangian with respect to x to zero yields the full

adjoint equations

AT (z)λ = CT (z) [Cr(z)xr − C(z)x] . (3.38)

• Setting the derivative of the Lagrangian with respect to xr to zero yields the

reduced adjoint equations

AT
r (z)λr = CT

r (z) [C(z)x − Cr(z)xr] . (3.39)

• Setting the derivative of the Lagrangian with respect to zi to zero yields the

optimality conditions

[
∂C

∂zi

(z)x −
∂Cr

∂zi

(z)xr

]T

[C(z)x −Cr(z)xr] + λT

[
∂A

∂zi

(z)x −
∂B

∂zi

(z)

]

+ λT
r

[
∂Ar

∂zi
(z)xr −

∂Br

∂zi
(z)

]

= 0. (3.40)

The reduced gradient of the cost functional is then given by

∂G

∂zi
=

[
∂C

∂zi
(z)x −

∂Cr

∂zi
(z)xr

]T

[C(z)x − Cr(z)xr] + λT

[
∂A

∂zi
(z)x −

∂B

∂zi
(z)

]

+ λT
r

[
∂Ar

∂zi

(z)xr −
∂Br

∂zi

(z)

]

, (3.41)
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where the full state x, reduced state xr, full adjoint variable λ and reduced adjoint

variable λr respectively satisfy the full forward equation (3.34), the reduced forward

equation (3.35), the full adjoint equation (3.38), and the reduced adjoint equation

(3.39).

3.4 Unsteady Problems

For clarity, we recall the results in Section 2.1 that given a general parametrized LTI

dynamical system

E(z)ẋ = A(z)x + B(z)u, (3.42)

y = C(z)x, (3.43)

x(0) = x0, (3.44)

zmin ≤ z ≤ zmax, (3.45)

a projection-based model order reduction technique yields the reduced system of the

form

Er(z)ẋr = Ar(z)xr + Br(z)u, (3.46)

yr = Cr(z)xr, (3.47)

xr(0) = ΨTx0, (3.48)

zmin ≤ z ≤ zmax, (3.49)

where Er(z) = ΨTE(z)Φ, Ar(z) = ΨT A(z)Φ, Br(z) = ΨTB(z), Cr(z) = C(z)Φ.

We define the cost functional

G(z) =
1

2
‖y − yr‖

2
O =

1

2

∫ tf

0

‖y − yr‖
2
2 dt =

1

2

∫ tf

0

‖C(z)x− Cr(z)xr‖
2
2 dt, (3.50)

which describes the error between the full and reduced models over the parameter

space z, integrated over some time horizon of interest tf . The greedy optimization
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problem in each adaptive cycle then reads

max
x,xr,z

G =
1

2

∫ tf

0

‖C(z)x −Cr(z)xr‖
2
2 dt, (3.51)

subject to

E(z)ẋ = A(z)x + B(z)u, (3.52)

x(0) = x0, (3.53)

Er(z)ẋr = Ar(z)xr + Br(z)u, (3.54)

xr(0) = ΨTx0, (3.55)

zmin ≤ z ≤ zmax. (3.56)

The optimality conditions for the constrained optimization problem (3.51)–(3.56)

can be derived by defining the Lagrangian functional

L(z,x,xr, λ, λr, γ, γr) =
1

2

∫ tf

0

‖C(z)x − Cr(z)xr‖
2
2 dt

+

∫ tf

0

λT [E(z)ẋ− A(z)x −B(z)u] dt +

∫ tf

0

λT
r [Er(z)ẋr − Ar(z)xr − Br(z)u] dt

+γT
[
x(0) − x0

]
+ γT

r

[
xr(0) − ΨTx0

]
, (3.57)

where λ ∈ IRn and λr ∈ IRm are the full and the reduced adjoint variables that respec-

tively enforce the full and the reduced equations. Two additional adjoint variables

γ ∈ IRn and γr ∈ IRm are used to enforce the initial conditions for the full and the re-

duced models, respectively. Note that the bound constraints are excluded and treated

separately as in Section 3.1.3. The first-order Karush-Kuhn-Tucker optimality system

can be derived by taking variations of the Lagrangian with respect to the adjoints,

states, and parameter as follows:

• Setting the first variation of the Lagrangian with respect to λ to zero, and

arguing that the variation of λ is arbitrary in (0, tf), yield the full equation

(3.52).
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• Setting the first variation of the Lagrangian with respect to λr to zero, and

arguing that the variation of λr is arbitrary in (0, tf), yield the reduced equation

(3.54).

• Setting the derivative of the Lagrangian with respect to γ to zero yields the full

initial condition equation (3.53).

• Setting the derivative of the Lagrangian with respect to γr to zero yields the

reduced initial condition equation (3.55).

• Setting the first variation of the Lagrangian with respect to x to zero, and

arguing that the variation of x is arbitrary in (0, tf), at t = 0 and at t = tf ,

yield the full adjoint equation, final condition and definition of γ

ET (z)λ̇ + AT (z)λ = CT (z) [C(z)x − Cr(z)xr] , (3.58)

λ(T ) = 0, (3.59)

γ = ET (z)λ(0). (3.60)

• Setting the first variation of the Lagrangian with respect to xr to zero, and

arguing that the variation of xr is arbitrary in (0, tf), at t = 0 and at t = tf ,

yield the reduced adjoint equation, final condition and definition of γr

ET
r (z)λ̇r + AT

r (z)λr = CT
r (z) [Cr(z)xr −C(z)x] , (3.61)

λr(T ) = 0, (3.62)

γr = ET
r (z)λr(0). (3.63)

• Setting the derivative of the Lagrangian with respect to zi to zero yields the
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optimality condition

∫ tf

0

[
∂C

∂zi

(z)x −
∂Cr

∂zi

(z)xr

]T

[C(z)x − Cr(z)xr] dt

+

∫ tf

0

λT

[
∂E

∂zi

(z)ẋ −
∂A

∂zi

(z)x −
∂B

∂zi

(z)u

]

dt

+

∫ tf

0

λT
r

[
∂Er

∂zi

(z)ẋr −
∂Ar

∂zi

(z)xr −
∂Br

∂zi

(z)u

]

dt

−(γT + γT
r ΨT )

∂x0

∂zi
= 0. (3.64)

The reduced gradients of the cost functional with respect to z are then given by

∂G

∂zi

=

∫ tf

0

[
∂C

∂zi

(z)x −
∂Cr

∂zi

(z)xr

]T

[C(z)x −Cr(z)xr] dt

+

∫ tf

0

λT

[
∂E

∂zi

(z)ẋ −
∂A

∂zi

(z)x −
∂B

∂zi

(z)u

]

dt

+

∫ tf

0

λT
r

[
∂Er

∂zi

(z)ẋr −
∂Ar

∂zi

(z)xr −
∂Br

∂zi

(z)u

]

dt,

−(γT + γT
r ΨT )

∂x0

∂zi
, (3.65)

where the full state x, reduced state xr, full adjoint variable λ and reduced variable

λr respectively satisfy the full forward equation (3.52), the reduced forward equa-

tion (3.54), the full adjoint equation (3.58)–(3.59), and the reduced adjoint equation

(3.61)–(3.62). In addition, the adjoints γ and γr satisfy (3.60) and (3.63), respectively.

Note that derivation of the optimization problem for discrete time systems and

their corresponding optimality conditions is similar, and hence omitted here.

A question one may immediately ask is what kind of input, u = u(t) we should

use in the optimization problem. The answer is given by the following proposition.

Proposition 3.1 Assume the full system (3.52) is a single-input multi-output (SIMO)

dynamical system. If the output error norm for the impulse response is bounded, i.e.,

‖g(z)‖2
O =

∫ tf

0

‖(h(τ) − hr(τ))‖2
2 dτ ≤ ǫ

73



where h(t) and hr(t) are the impulse responses of the full and reduced models, respec-

tively, then the error norm for an arbitrary input u with finite norm is also bounded,

i.e.,
‖G(z)‖2

O

‖u‖2
I

≤ ǫ

where the norm of the input is given as ‖u‖2
I =

∫ tf
0

∫ t

0
u(t − τ)2 dτ dt.

Proof: Using the definition of the output norm, convolution integral and Cauchy-

Schwarz inequality gives

‖G(z)‖2
O =

∫ tf

0

‖y − yr‖
2
2 dt =

∫ tf

0

∥
∥
∥
∥

∫ t

0

(h(τ) − hr(τ)) u(t − τ) dτ

∥
∥
∥
∥

2

2

dt

≤

∫ tf

0

∫ t

0

‖(h(τ) − hr(τ))‖2
2 dτ

∫ t

0

u(t − τ)2 dτ dt

≤

∫ tf

0

‖(h(τ) − hr(τ))‖2
2 dτ

∫ tf

0

∫ t

0

u(t − τ)2 dτ dt ≤ ǫ‖u‖2
I .

�

It should be pointed out that it is sufficient to consider a SIMO system since a

multi-input multi-output system is equivalent to a superposition of SIMO systems.

The above proposition is important for the greedy optimization process, that is,

we need to only consider the impulse input in the adaptive sampling procedure. Once

the error of the reduced model is small for the impulse input, it will be small for an

arbitrary input with finite norm. While the result in Proposition 3.1 is general, in

practice the frequency content of the input is sometimes known a priori. In that case,

an appropriate input (i.e. not the impulse) with the given frequency content could

be used.

For problems that are linear in state vector x, one can transform the full and the

reduced equations from the time domain into the frequency domain. In the frequency

domain, the problem can be considered as a steady system, and the forcing input

is replaced by the frequency ω. The trade-off here is that the size of the system is

double, though the system has some structure, and the frequency ω is an additional

parameter which is assumed to be in the range ωmin ≤ ω ≤ ωmax, where [ωmin, ωmax]
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is the frequency range of interest. However, conceptually one could solve a greedy

optimization problem, by exploiting the special structure of the problem, to select

frequencies within this range at which snapshots should be computed.
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Chapter 4

Steady Thermal Fin Heat

Conduction Models

In this chapter, we consider the thermal fin design problem adopted from [116]. While

the thermal fin geometry in [116] is fixed, it is allowed to vary in this thesis. As a

result, our problem is described by thirty-four parameters. The detail of the problem

in both physical domain and computational domain is first described. The application

of the model-constrained greedy-based sampling approach developed in Chapter 3 to

obtain reduced models for the thermal fin problem is then performed for different

number of parameters. Finally, the thermal fin optimal design problem with 11

parameters using the reduced model is presented and compared to that obtained

using the full model.

4.1 Physical Domain Formulation

The two-dimensional thermal fin is shown in Figure 4-1. It consists of the vertical post

and four horizontal subfins. The purpose of the thermal fin is, for example, to conduct

heat from some machine, which is attached to the root, through the large-surface-

area subfins to the surrounding flowing air. The vertical post has eight sub-regions

denoted as Ω̄9, . . . , Ω̄16 with corresponding thermal conductivities κ9, . . . , κ16 (e.g.

these regions could be made of different materials). Each subfin has two different
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sub-regions, e.g. Ω̄2i−1 and Ω̄2i for the ith subfin, where i = 1, . . . , 4, and these

sub-regions have different thermal conductivities denoted as κ1, . . . , κ8. In addition,

the size of all the sub-regions of the post and the subfins could be varied and they

are denoted as b1, . . . , b17, as shown in Figure 4-1. Another parameter of interest is

the Biot number, Bi, which characterizes the convective heat to the air at the fin

surfaces. Therefore, we have in total thirty-four parameters, which are represented

by the vector of parametric inputs z as z = {z1, . . . , z34}, where zi = κi, i = 1, . . . , 16,

z17 = Bi, and z17+j = bj , j = 1, . . . , 17.

ȳ
x̄

b17

b 1Ω̄9

Ω̄10 b 4

b2

Ω̄1

b3

Ω̄2

Ω̄11 b 5

Ω̄12

Ω̄13 b 9

Ω̄14

Ω̄15

Ω̄16

b 1
3

b 8

b6

Ω̄3

b 1
2

b10

Ω̄5

b 1
6

b14

Ω̄7

b7

Ω̄4

b11

Ω̄6

b15

Ω̄8

Root

Figure 4-1: The thermal fin geometry in the physical domain.

The steady-state temperature distribution within the fin, w(z), is governed by the

following elliptic PDE

−κi∇
2wi = 0 in Ω̄i, i = 1, . . . , 16, (4.1)

where wi denotes the restriction of w to Ω̄i, ∇ = ∂
∂x̄

î + ∂
∂ȳ

ĵ, and ∇2 = ∂2

∂x̄2 + ∂2

∂ȳ2 ,
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where î and ĵ are the unit vectors pointing along the x̄− and ȳ−direction. The

continuity of temperature and heat flux at the conductivity-discontinuity interfaces

Γ̄int
ij = ∂Ω̄i ∩ ∂Ω̄j for two adjacent regions Ω̄i and Ω̄j , where ∂Ω̄i and ∂Ω̄j denote the

boundary of Ω̄i and Ω̄j respectively, are ensured by the following interface condition

wi = wj

−κi(∇wi · n̂i) = −κj(∇wj · n̂j)






on Γ̄int

ij , (4.2)

where n̂i and n̂j denote the outward normal of Ω̄i and Ω̄j on the interface Γ̄int
ij ,

respectively. In order to model the convective heat losses on the external surface of

a region Ω̄i, i.e. Γ̄ext
i = ∂Ω̄i \ Γ̄int

ij and Γ̄ext
i 6= ∅, we use the following Robin boundary

condition

−κi(∇wi · n̂i) = Bi wi on Γ̄ext
i if Γ̄ext

i 6= ∅, i = 1, . . . , 16. (4.3)

Finally, to model the heat source at the root, the Neumann flux boundary condition

is imposed as

−κ9(∇w9 · n̂9) = −1 on Γ̄root. (4.4)

For this particular problem, the output of interest is the average temperature over

the whole thermal fin

y =

∑16
i=1

∫

Ω̄i
w dΩ̄i

∑16
i=1

∫

Ω̄i
1 dΩ̄i

. (4.5)

Following Ref. [116], it can be showed that the temperature distribution solution

w belongs to the Hilbert space H1(Ω̄), where Ω̄ = ∪16
i=1Ω̄i, and satisfies the following

weak form

a(w, v) = ℓ(v), ∀v ∈ H1(Ω̄), (4.6)

where the bilinear form a is given as

a(w, v) =

16∑

i=1

κi

∫

Ω̄i

∇w · ∇v dΩ̄i + Bi

16∑

i=1

∫

Γ̄ext
i

wv dΓ̄ext
i , (4.7)
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and the linear form ℓ as

ℓ(v) =

∫

Γ̄root

v dΓ̄root (4.8)

4.2 Computational Domain Formulation

As a common practice, it is useful to transform the physical domain to a computa-

tional (or reference) domain to carry out the numerical calculation. A clear advantage

is that one only needs to mesh the computational domain once, and the computa-

tional mesh can be used to solve the problem with any set of thermal conductivities,

lengths and Biot number. The computational domain is chosen as in Figure 4-2 in

which the dimensions of all computational regions are also presented.

y
x

1

0.
75Ω9

Ω10 0.
25

2.5

Ω1

2.5

Ω2

Ω11 0.
75

Ω12

Ω13 0.
75

Ω14

Ω15

Ω16

0.
75

0.
25

2.5

Ω3

0.
25

2.5

Ω5

0.
25

2.5

Ω7

2.5

Ω4

2.5

Ω6

2.5

Ω8

Root

Figure 4-2: The thermal fin geometry in the computational domain.

Using a few simple linear transformation rules from x̄ȳ−coordinates to xy−coordinates,
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one can write the weak form (4.6) as

a(w, v) = ℓ(v), ∀v ∈ H1(Ω), Ω = ∪16
i=1Ωi, (4.9)

where the linear form ℓ is now given as

ℓ(v) = b17

∫

Γroot

v dΓroot, (4.10)

and the bilinear form a as

a(w, v) =

16∑

i=1

{

Θ2i−1

∫

Ωi

∂w

∂x

∂v

∂x
dΩi + Θ2i

∫

Ωi

∂w

∂y

∂v

∂y
dΩi

}

+

16∑

j=1

Θj+32

∫

Γext
bj

wv dΓext
bj

,

(4.11)

where Γext
bj

denotes the external boundary corresponding to bj , and Θi are given as

Θ4j−3 = 10
κ2j−1 b4j

b4j−2
, Θ4j−2 = 0.1

κ2j−1 b4j−2

b4j
,

Θ4j−1 = 10
κ2j b4j

b4j−1
, Θ4j = 0.1

κ2j b4j−1

b4j
,

Θ13+4j =
κ7+2j b4j−3

0.75b17
, Θ14+4j =

κ7+2j b17
0.25b4j−3

,

Θ15+4j = 0.25
κ8+2j b4j

b17
, Θ29+4j =

Bi b4j−3

0.75
,

Θ30+4j =
Bi b4j−2

2.5
, Θ31+4j =

Bi b4j−1

2.5
,

Θ32+4j =
Bi b4j

0.25
, j = 1, . . . , 4.

The output of interest is now given as

y =

∑16
i=1 βi

∫

Ωi
w dΩi

∑16
i=1 βi

∫

Ωi
1 dΩi

, (4.12)

where βi are given by

β2j−1 =
b4j−2 b4j

0.625
, β2j =

b4j−1 b4j

0.625
,

β7+2j =
b17 b4j−3

0.75
, β8+2j =

b17 b4j

0.25
,

j = 1, . . . , 4

Next using the finite element method with triangular linear elements, for example,
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the weak form (4.9) can be written in matrix form as

A(z)x = B(z), y = C(z)x, (4.13)

where the vector x consists of all nodal temperature values. The matrices A(z), B(z),

and C(z) are as follows

A(z) =
48∑

i=1

Θi(z)Aqi
, (4.14)

B(z) = z34Bq, (4.15)

C(z) =

16∑

i=1

Λi(z)Cqi
, (4.16)

where Aqi
, Bq and Cqi

are the appropriate finite element matrices that do not depend

on the parameters z, and Λi are given as

Λi(z) =
βi(z)

∑16
j=1 βj(z)

∫

Ωi
1 dΩi

. (4.17)

It should be pointed out that if one chooses the average temperature at the root as

the output of interest, the output matrix C is then exactly Bq which does not depend

on the parameters z.

The matrices in (4.14)–(4.16) admit an affine decomposition in which the affine

coefficients, Θi and Λi, are nonlinear functions of the parameters z. This affine de-

composition together with the projection-based model reduction technique enables us

to obtain efficient reduced models, i.e. models for which solution cost is independent

of the full model size.

The design problem of interest here is to find the best materials and geometry

lengths combination to maximize the cooling efficiency. Note that the output is

directly related to the cooling efficiency, that is, the smaller the output, the better

the cooling efficiency. Therefore the design problem becomes finding the best set of

parameters z to minimize the output y defined in (4.12).
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4.3 Numerical Results

In this chapter, the ranges (bound constraints) of the parameters are as follows

0.1 ≤ κj ≤ 10, j = 1, . . . , 16, (4.18)

0.01 ≤ Bi ≤ 5, (4.19)

0.1 ≤ bj , j = 1, . . . , 17, (4.20)

b4j−3 ≤ 5, j = 1, . . . , 4, (4.21)

b4j−2 ≤ 10, j = 1, . . . , 4, (4.22)

b4j−1 ≤ 10, j = 1, . . . , 4, (4.23)

b4j ≤ 2.5, j = 1, . . . , 4, (4.24)

0.1 ≤ b17 ≤ 5. (4.25)

It should be pointed out that the parameter range is wide in the sense that the upper

bound for a parameter is two orders of magnitude larger than the corresponding lower

bound. Thus, this presents a challenge for model reduction methods in creating a

reduced model of moderate size that accurately captures the full model behavior over

such a wide range of parameter values in multidimensional parametric input space.

We also introduce the baseline parameter set as

κbaseline
i = 0.4, i = 1, 2, (4.26)

κbaseline
i = 0.6, i = 3, 4, (4.27)

κbaseline
i = 0.8, i = 5, 6, (4.28)

κbaseline
i = 1.2, i = 7, 8, (4.29)

κbaseline
i = 1.0, i = 9, . . . , 16, (4.30)

Bibaseline = 0.1, (4.31)

bbaseline
4i−3 = 0.75, i = 1, . . . , 4, (4.32)

bbaseline
4i−2 = 2.5, i = 1, . . . , 4, (4.33)

bbaseline
4i−1 = 2.5, i = 1, . . . , 4, (4.34)

83



bbaseline
4i = 0.25, i = 1, . . . , 4, (4.35)

bbaseline
17 = 1.0, (4.36)

so that if any parameter is not allowed to vary, it will take its corresponding baseline

value.

For all problems considered in the following, since it is too computationally expen-

sive to cover multidimensional parameter spaces with full factorial search, we limit

ourselves to define the maximum output error to be the maximum error between

the full and the reduced model outputs over a random set of 105 parameters in the

parameter space under consideration. For the model-constrained adaptive sampling

method, we choose ǫ in Step 2 of Algorithm 3.1 to be ǫ = 1.0e − 14.

Initial guesses for the model-constrained adaptive sampling method are obtained

from logarithmic random sampling. The smallest allowable distance between an ini-

tial guess and all existing sample locations is chosen to be mini{z
i
max − zi

min}. Unless

otherwise specified, the reduced basis is computed by performing Gram-Schmidt or-

thogonalization on the snapshots. Finally, the computation time is measured on a

dual core 64-bit personal computer with 3.2GHz Pentium processor.

4.3.1 Error Indicator Using the Euclidean 2-norm versus the

Hilbert Dual Norm

As discussed in Section 3.1.2, one can use the residual norm as the error indicator in

the greedy optimization problem. Intuitively, the adaptive sampling procedure will

drive the residual to zero as more greedy cycles are taken. For steady problems that

are linear in the state vector, using the residual in the 2-norm, for example, one can

show that

‖y − yr‖2 ≤ ‖C‖2‖A
−1‖2‖R‖2, (4.37)

and therefore the true output error is also driven down to zero as the residual norm

approaches zero. The question is now which norm to use for the residual. The two
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obvious choices are the residual in the Euclidean 2-norm

‖R‖2
2 = RTR, (4.38)

and in the dual norm [61] (discrete H−1−norm)

‖R‖2
D = RT Ā−1R (4.39)

where Ā is a SPD matrix that is given by, e.g. using the finite element method,

Āij =

∫

Ω

∇ϕi · ∇ϕj dΩ +
16∑

k=1

∫

Γext
bj

ϕiϕj dΓext
bj

, (4.40)

where ϕi denotes the usual finite element hat functions. The theoretical problem with

the Euclidean 2-norm is that the residual using this norm is a sum of an increasing

number of terms as the grid (or mesh) is refined [116], and hence theoretically it will

converge to infinity as the grid size approaches zero. The advantage of the Euclidean

2-norm is that it is simple and may be the only choice for problems that are not

from a discretization of some set of PDEs, such as a molecular dynamic simulation

problem. The residual in the dual norm, on the other hand, is more expensive to use

since it involves the inversion of Ā, but as the grid size approaches zero it will not

approach infinity due to the presence of Ā−1 as the stabilization.

In practice, the grid size is finite and we would like to investigate the impact

of these norms on the quality of the reduced model using the adaptive sampling

approach. In particular, we consider using these norms for the residual in the cost

functional in (3.10) to find a reduced basis, and hence a reduced model. We consider

a test case of the thermal fin problem with five parameters, namely the thermal

conductivities of the four subfins and the Biot number, i.e.

z = {κ1, κ2, κ3, κ4, Biot}. (4.41)

Figure 4-3 shows a coarse grid with 1333 nodes, a medium grid with 4760 nodes
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and a fine grid with 17899 nodes for the thermal fin. Recall that a finite element

model with linear triangular elements is used for the thermal fin problem, and hence

the number of nodes is the same as the number of unknowns (because there are no

Dirichlet boundary conditions in this problem).

Next, we run the adaptive sampling procedure with 25 greedy cycles using two

different greedy optimization problems that have the same form as (3.10)–(3.13) but

with the residual in the Euclidean 2-norm and the Hilbert dual norm as the cost

functional. We have used the same sequence of initial guesses with 25 parameter

points for the two optimization problems. In Table 4.1 the maximum output error is

used to compare the quality of the resulting reduced models when the grid is refined.

As can be seen, using the adaptive sampling procedure for the thermal fin problem,

the difference between using the residual in the 2-norm and in the dual norm is small.

In fact, for a finite grid size, these norms are equivalent in the sense

αmin‖R‖2
2 ≤ ‖R‖2

D ≤ αmax‖R‖2
2, (4.42)

where αmin and αmax are the maximum and the minimum eigenvalues of the matrix

Ā−1. The similarity in performance is further confirmed in Figure 4-4 in which we

plot the maximum output error versus the number of reduced basis vectors. Again,

the difference is so small that, for a finite grid size, either the residual in the 2-norm

or in the dual norm can be used as the error indicator in the adaptive sampling

procedure.

Table 4.1: Adaptive sampling procedure for the thermal fin problem with five param-
eters using the residual in the 2-norm and in the dual norm as the cost functional.
The maximum output error is shown for all three grids.

Grids max ‖y − yr‖
2
2 max ‖y − yr‖

2
2

(G = ‖R‖2
2) (G = ‖R‖2

D)

Coarse 3.5830e-06 1.5867e-05
Medium 8.9126e-06 1.5575e-05
Fine 7.5282e-06 4.7335e-06
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(a) Coarse grid

(b) Medium grid

(c) Fine grid

Figure 4-3: The thermal fin with a coarse grid with 1333 nodes, a medium grid with
4760 nodes and a fine grid with 17899 nodes.
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From now on to the end of this chapter, the fine grid is used for all problems and

only the residual in the 2-norm is used as the error indicator.

4.3.2 Performance of the Bound-Constrained Optimization

Solver

In this section, we investigate the efficiency of the optimization solver for the greedy

optimization problem discussed in Section 3.1.3. In Figure 4-5(a), we show the number

of Newton steps versus the number of greedy cycles for the case of 34 parameters. As

can be seen, the maximum number of Newton steps is 40, which occurs at the 24th

greedy cycle. For the other adaptive cycles, the number of Newton steps is less than

30. Figure 4-5(b) shows the maximum number of Newton steps over 2d greedy cycles

for cases with a varying number of parameters d. It can be seen that for these cases,

the number of Newton steps is O(d).

Recall that, due to the combination of the trust region strategy and the inexact

Newton-CG method, quadratic convergence is observed for all greedy cycles that

satisfy the quadratic convergence condition (i.e. when the iterate is close enough to a

local maximizer). Typical quadratic convergence is shown in Table 4.2 in which the

cost functional and the scaled gradient are shown along with the number of Newton
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Figure 4-4: Maximum reduced model output error using the residual in the 2-norm
versus in the dual norm for the thermal problem with five parameters.
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Figure 4-5: Performance of the bound-constrained optimization solver: a) number
of Newton steps versus number of greedy cycles for 34-parameter case; b) maximum
number of Newton steps versus number of parameters

steps. When the iterate is far way from the local maximizer, the trust region method

picks the steepest ascent direction and the step is allowed to be as large as possible.

This happens for the first 16 Newton steps. Once the iterate is close to the local

maximizer, the Newton direction is picked and quadratic convergence, e.g. clearly for

the scaled gradient in Table 4.2, is observed for the last three Newton steps. The fast

convergence can also be seen in the cost functional G which increases by 9 orders of

magnitude from the initial guess to the local maximizer within 18 Newton steps.

Table 4.2: Typical quadratic convergence in the scaled gradient ‖D∇G‖2 from the
bound constrained optimization solver for the case with 34 parameters. The data are
shown for the third greedy cycle.

Number of Newton steps G ‖D∇G‖2

1 3.5306e-07 1.1503e-05
...

...
...

13 3.4580e+02 2.5811e-01
14 3.4598e+02 6.0533e-02
15 3.4603e+02 6.2677e-02
16 3.4603e+02 1.5441e-01
17 3.4603e+02 7.5716e-04
18 3.4603e+02 2.0260e-10
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4.3.3 Output Error Indicator versus True Output Error

In this section, we will compare the offline cost as well as the quality of the reduced

model using the model-constrained adaptive sampling approach in Algorithm 3.1 with

an error indicator and the true output error. For the error indicator, since we only

compute the full solution snapshots at the optimal parameter points found from the

greedy optimization problem, only these snapshots are used to enrich the reduced

basis. For the true error, we also take only the snapshots at the optimal parameter

points to enrich the reduced basis. For both approaches, the same sequence of initial

guesses is used in each greedy optimization cycle, and Gram-Schmidt orthogonaliza-

tion is used to update the reduced basis.

The examples considered here have 11 and 21 parameters, that is,

z = {κ1, . . . , κ5, Bi, b1, . . . , b5}, (4.43)

or

z = {κ1, . . . , κ10, Bi, b1, . . . , b10}. (4.44)

We use the number of full matrix factorizations as the measure for the offline cost

to compare the quality of the reduced models, since this is the dominant cost of the

reduction algorithm. For the 11-parameter case, Figure 4-6(a) shows that the required

number of matrix factorizations to reach a given error level is approximately an order

of magnitude larger for the true-error approach; however, for the same number of

basis functions retained in the reduced basis, Figure 4-6(b) shows that using the true

error rather than the indicator leads to more efficient (i.e. smaller for a given error

level) reduced models. This result might be intuitively expected, since the optimal

parameter points based on the true output error should better target reduction of

the true output error than those points selected using the error indicator. However,

there is no guarantee that this will always be the case, as shown in Figure 4-7 for the

case of 21 parameters. Figure 4-7(a) shows that the number of matrix factorizations

is again about an order of magnitude larger for the true-error approach. For smaller
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basis sizes, Figure 4-7(b) shows that the output error is again smaller than for models

obtained using the error indicator; however, for larger basis sizes, the true-error and

error-indicator approaches give equivalently good reduced models.

Figures 4-6 and 4-7 demonstrate a general tradeoff in the model-constrained sam-

pling methodology: if one is willing to invest larger offline cost to compute the reduced

model, then using the true error to select the parameter sample points can lead to

more efficient models. For some problems, such as real-time applications, minimiz-

ing the size of the reduced model may be critical; in that case, one might choose to

use the true-error approach. For very large-scale problems, however, the cost of the

true-error approach may be prohibitively high; in that case, the error indicator is an

attractive option. In many of the numerical experiments performed for the thermal

fin problem, and as demonstrated by the results in Figure 4-7, the difference in quality

between the true-error and error-indicator sample points tends to be larger in early

greedy cycles. Since the error function becomes more multimodal as the number of

greedy cycles increases, the chances of sampling at a local maximum are increased,

and thus the difference between the error-indicator and true-error approaches may

not be as great. One could therefore also conceive of using a combination of the two

error metrics, i.e. using the true error for early greedy cycles and the error indicator

for later cycles, in an attempt to balance offline cost with the quality of the reduced

model.

As discussed in Section 3.1.6, when using the true output error, one has interme-

diate full state snapshots and full adjoint snapshots available at all Newton steps, i.e.

the available snapshot information includes but is not limited to those solutions at the

optimal parameter points. We compare four methods of updating the reduced basis,

described in Section 3.1.6 and summarized in Table 4.3. In the first method, we add

all the snapshots of the current greedy cycle to the current reduced basis using the

Gram-Schmidt procedure (i.e. adding only information that is linearly independent of

the current reduced basis vectors). In the second method, we store all the snapshots,

which is possible for the thermal fin problem for a small number of greedy cycles, and

then perform the POD method on the complete snapshot set (i.e. that comprising
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Figure 4-6: Error indicator versus true output error for the thermal fin with 11
parameters. The same sequence of initial guesses is used for both true-error and
error-indicator approaches, and the Gram-Schmidt procedure is used to update the
reduced basis.
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Figure 4-7: Error indicator versus true output error for the thermal fin with 21
parameters. The same sequence of initial guesses are used for both true-error and
error-indicator approaches, and the Gram-Schmidt procedure is used to update the
reduced basis.
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the newly computed snapshots of the current greedy cycle and all the snapshots from

the previous greedy cycles). Denote χi to be the singular value corresponding to the

ith POD basis vector, which is added to the reduced basis if the following condition

is satisfied [40, 51]
∑i

j=1 χj
∑ns

j=1 χj
≤ η, (4.45)

where ns is the number of snapshots, and η ≤ 1. We choose η = 0.99999999 for

the second method. The third method is to perform the POD method on the newly

computed snapshots of the current greedy cycle with η = 0.99999999, and then add

only the dominant POD basis vectors to the current reduced basis using the Gram-

Schmidt procedure. The fourth method considered is the base case employed in

Figures 4-6 and 4-7, i.e. using the Gram-Schmidt procedure only on the snapshots at

the optimal parameter points.

Table 4.3: Four methods of updating the reduced basis when using the true output
error.

Method Intermediate Basis updating
information included

TrueErrorGS Yes Gram-Schmidt
TrueErrorPOD Yes POD
TrueErrorPOD-GS Yes POD and then Gram-Schmidt
TrueErrorGS-Opt No Gram-Schmidt

For these four methods, the reduced bases at each greedy cycle are not the same,

and hence the snapshots found in each cycle are different. Figures 4-8(a) and 4-9(a)

show that, with a same number of matrix factorizations, the first three methods yield

reduced models of equivalent accuracy. However, as can be seen in Figures 4-8(b)

and 4-9(b), with the same number of reduced basis vectors, the first method leads

to reduced models that are less accurate. That is, adding all new snapshots leads

to reduced models that are inefficient and unnecessarily large. The comparison with

the base approach shows that discarding the intermediate information leads to higher

offline cost, but significantly smaller reduced models for a given level of output error.
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(b) Maximum error versus the number of reduced basis vectors

Figure 4-8: Different methods of updating the reduced basis for the case with 11
parameters. The comparisons are the true output error using the Gram-Schmidt
procedure for all snapshots ( TrueErrorGS), the true output error with the POD
method for all snapshots after each greedy cycle (TrueErrorPOD), the true output
error with the Gram-Schmidt procedure on the POD vectors of the snapshots of the
current greedy cycle and on the current reduced basis (TrueErrorPOD-GS), and the
true output error with the Gram-Schmidt procedure only on the optimal parameter
points (TrueErrorGS-Opt).
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Figure 4-9: Different methods of updating the reduced basis for the case with 21
parameters. The comparisons are the true output error using the Gram-Schmidt
procedure for all snapshots ( TrueErrorGS), the true output error with the POD
method for all snapshots after each greedy cycle (TrueErrorPOD), the true output
error with the Gram-Schmidt procedure on the POD vectors of the snapshots of the
current greedy cycle and on the current reduced basis (TrueErrorPOD-GS), and the
true output error with the Gram-Schmidt procedure only on the optimal parameter
points (TrueErrorGS-Opt).
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In summary, either the error indicator or the true error can be used as the cost

functional in the model-constrained adaptive sampling approach. For the thermal

fin problem, the error-indicator approach leads to accurate reduced models with ap-

proximately one order of magnitude reduction in offline cost compared to using the

true error. Unless it is critical to decrease the size of the reduced model as much as

possible, using the error indicator is the recommended approach, especially for very

large-scale systems where the additional offline computational cost of using the true

error may be prohibitively high. Further, if using the true-error approach, although

intermediate state and adjoint information is available and can be included in the

basis updating process, the results indicate that doing so compromises the quality of

the resulting reduced models.

In the next section, we compare the model-constrained adaptive sampling method

with other sampling approaches. For all results that follow, the error-indicator ap-

proach is used.

4.3.4 Model-Constrained Adaptive Sampling versus Other

Sampling Methods

In this section we compare the model-constrained adaptive sampling approach using

the residual error indicator as the objective function with other sampling approaches.

We first consider the greedy sampling method, which is the fundamental concept

underlying the model-constrained approach. We then compare the model-constrained

approach with four statistically-based sampling methods.

Model-Constrained Adaptive Sampling Approach versus the Greedy Sam-

pling Approach

To apply the greedy sampling method in [61, 62, 68], one needs to determine a train-

ing parameter set with ntrain parameters. At each point in this parameter set, the

reduced states are computed by solving the reduced model. The error estimator, i.e.

here the residual in the 2-norm, is then computed. The location in the training pa-
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rameter set at which the error estimator is maximal is then found, the reduced basis

is updated with the snapshot at this sample location, and the updated reduced model

is computed. To generate the training set for the greedy sampling approach, we use

two different methods, namely logarithmic random sampling and Latin hypercube

sampling (LHS).

For the model-constrained adaptive sampling approach, we use logarithmic ran-

dom sampling to generate initial guesses for the greedy optimization problem. The

residual in the 2-norm is used as the error indicator; hence, only snapshots at the op-

timal parameter points are computed. A total of 100 greedy cycles are used for both

model-constrained sampling and greedy sampling methods; hence, both methods will

provide 100 sample points at which the snapshots are computed to form the reduced

basis. This comparison set-up gives us the same offline cost corresponding to the

full model solve, costF , in (3.25) for both methods. The only difference is the offline

cost corresponding to the reduced model solve, costR. For the model-constrained

approach, costR for steady problems is approximately given as

costR
model-constrained ∼ d

nG∑

j=1

2

3
j3 + [2(1 + nHv) + n2

Θ]j2, (4.46)

where, following the affine decomposition in (4.14), we have also incorporated the

cost of forming the reduced matrix Ar as n2
Θi2, where nΘ = 48 is the number of terms

in (4.14). The offline cost corresponding to the reduced model solve for the greedy

sampling approach (either with logarithmic random sampling or LHS) is given by

costR
greedy ∼ ntrain

nG∑

j=1

2

3
j3 + (n2

Θ + 1)j2. (4.47)

At each greedy cycle, the greedy sampling approach needs to solve ntrain dense reduced

models at ntrain parameters to find the reduced states in order to compute the error

estimator. The model-constrained approach needs to solve the greedy optimization

problem in each greedy cycle. The difference in the cost in each greedy cycle is

therefore the multiplicative constant d for the model-constrained approach and ntrain
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for greedy sampling methods. For the following comparisons, we choose ntrain =

104 ≫ d ∈ {11, 21}.

Figures 4-10(a) and 4-10(b) show the comparison for the three methods for the

case of 11 and 21 parameters, respectively. It can be seen that the maximum output

error obtained using the model-constrained approach is, for the most part, comparable

to that of the greedy sampling method with logarithmic random training points. For

the case with 21 parameters, the model-constrained method is able to achieve an

order of magnitude better error than the greedy approach for larger reduced model

sizes. Using the greedy sampling method with LHS training points led to larger errors

than those obtained using the other two methods.

A key difference between the methods is that the greedy sampling approach finds

globally-optimal parameter points within the discrete training set (via exhaustive

search) while the model-constrained approach finds locally-optimal parameter points

in the continuous parameter space (by solving an optimization problem). As a result,

unless ntrain is sufficiently large, the training set may not adequately cover important

parameter regions, particularly as the dimension of the parametric space becomes

large. This difference is highlighted by the results in Figure 4-10(b), where even 104

training points were not sufficient for the greedy sampling method to find near-optimal

sample points in later greedy iterations.

Although the total number of large-scale matrix factorizations is 100 for both

the model-constrained and greedy sampling methods, the actual offline cost differs

substantially between the two. Table 4.4 compares the CPU time required to compute

the reduced basis for the three approaches for the case of 21 parameters. It can be

seen that the model-constrained approach is approximately 16 times faster than the

greedy sampling approaches. This difference is due to the need for exhaustive search

over 104 training points on every greedy iteration in the greedy sampling method,

which for this case is the dominant offline cost. This could be a particular concern

as the number of parameters, d, and hence the necessary number of training points,

ntrain, increases.
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(a) 11-parameter case
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(b) 21-parameter case

Figure 4-10: Model-constrained sampling approach versus greedy sampling ap-
proaches (Greedy-LogRandom: greedy sampling with logarithmic random training
parameter set, and Greedy-LHS: greedy sampling with LHS training parameter set)
over 100 greedy cycles. A training set with 104 training points is used in the greedy
search for the greedy sampling approaches.

100



Table 4.4: The offline cost in CPU time of the model-constrained sampling approach
and the greedy sampling approaches for the case of 21 parameters. 100 greedy cycles
are taken for all methods and ntrain = 104 for the greedy sampling approaches.

Model-constrained Greedy sampling Greedy sampling
sampling with logarithmic random with LHS

CPU time 0.58 hours 8.33 hours 8.33 hours

Model-Constrained Adaptive Sampling versus Other Sampling Methods

Next, we compare the model-constrained sampling method with statistically-based

sampling methods in the context of snapshot generation for model reduction. In

particular, we compare our model-constrained sampling with LHS sampling, uniform

random sampling, logarithmic random sampling, and CVT sampling. For all methods,

we take 100 sample points to generate 100 snapshots, which are then used to form the

reduced basis. As can be seen in Figures 4-11(a) and (b) for 11 and 21 parameters,

respectively, the model-constrained sampling method outperforms the other methods

in the sense that, for a given basis size, the reduced model error is several orders of

magnitude smaller than that obtained using the other methods. Furthermore, going

from 11 to 21 parameters, the difference in accuracy of the reduced model using model-

constrained sample points and those of other methods is larger. This reflects the fact

that the model-constrained sampling is a model-based sampling method; that is, the

parameter is sampled where the indicator of the error between the full and the reduced

models is locally largest. The other methods, on the other hand, use no knowledge

of the underlying model when selecting their sample points. As the dimension of the

parametric space increases, it becomes more and more difficult to adequately cover

the space with a reasonable number of samples using the statistically-based sampling

methods.

Generating the sample points using either logarithmic random sampling or uniform

random sampling is very rapid. For the other methods, there is additional overhead

in LHS (due to stratification and grouping processes), in CVT sampling (due to its

iterative nature), and in model-constrained sampling (due to solving the optimization
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problem). We also note that while logarithmic random sampling is less expensive (in

terms of overhead) than the CVT and LHS sampling methods, it leads to more

accurate reduced models in the case of the thermal fin problem.

For the statistically-based methods that have some random elements (i.e. LHS,

uniform random sampling and logarithmic random sampling), the comparison in Fig-

ure 4-11 is limited to one random set of parameters. A different random draw could

lead to different results and different reduced model performance. However, first we

note that the relative performance difference of the model-constrained sampling ap-

proach is significant; thus, variation in performance due to variability in the random

draw is not expected to alter the conclusion that the model-constrained method per-

forms better than the other methods. Second, even if one particular random draw

could lead to a reduced model that outperforms the model-constrained approach, it

is preferable to have a systematic methodology with repeatable performance, rather

than relying on a favorable random sample to achieve good results.

Next, we study the sensitivity of the quality of model-constrained sample points

using different methods to generate the initial guesses. In particular, we take the

points in parameter space corresponding to the logarithmic random, uniform ran-

dom, LHS, and CVT samplings that were previously used to obtain the results in

Figure 4-11 as initial guesses, z0, for the model-constrained sampling method. For

each parameter point, we then solve an optimization problem to determine the cor-

responding z∗, which becomes the new sample point. Since our algorithm uses the

error indicator, we only perform a large-scale solve at the optimal parameter point z∗;

hence the cost is not increased (with the exception of the optimization solver over-

head). Figures 4-12(a) and (b) show the maximum output error versus the number

of reduced basis vectors for both the 11- and 21-parameter cases. It can be seen that

the quality of the reduced model resulting from the model-constrained approach is

relatively insensitive to the initial guesses, at least for the thermal fin problem con-

sidered here. That is, the quality of the sample points using different methods to

generate initial guesses is more or less the same. Again, this emphasizes the benefit

of a systematic, repeatable point selection criterion.
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(b) 21-parameter case

Figure 4-11: Model-constrained sampling versus LHS, uniform random sampling
(URandom), logarithmic random sampling (LogRandom) and CVT sampling. 100
sample points are used for all methods.
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Figure 4-12: Model-constrained sampling method using logarithmic random sam-
pling (ModelConstrained-LogRandom), LHS (ModelConstrained-LHS), uniform ran-
dom (ModelConstrained-URandom), and CVT (ModelConstrained-CVT) to generate
initial parameter guesses, z0. 100 sample points are used for all methods of initial-
ization.
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4.3.5 Optimal Design Application

In this section, the reduced model is used as a surrogate model in the optimal design

context. That is, instead of performing the design task on the full model, the design

task is carried out on the reduced model, which is much less expensive. Recall that

the design problem is to find a combination of thermal conductivities, Biot number,

and lengths to minimize the output average temperature (and hence maximize the

cooling efficiency).

Here we consider the thermal fin optimal design problem with 11 parameters, as

shown in Table 4.5. The reduced model is generated using the model-constrained

approach as in Section 4.3.4 with 100 basis vectors. Using the same initial design,

which is shown in the second column in Table 4.5, we obtain different optimal solutions

using the full and the reduced model, as shown in the third and fourth columns of

Table 4.5, respectively. Although the values of the objective function for these two

designs are similar, the optimal solution obtained from the reduced model does not

satisfy the optimality conditions of the full problem.

To improve the quality of the reduced model we run 50 additional greedy cycles

to obtain 50 more basis vectors. The optimal design for the reduced model with 150

basis vectors is shown in the fifth column of Table 4.5. Again, the optimal solution

of the reduced model is different from that of the full one, although the objective

function value is the same. In this case, the optimum found by the reduced model is

a local minimum of the full model.

The reduction factor in model size is 119 (from the full model with 17899 states

to the reduced model with 150 states), but the speed-up factor in solving the optimal

design problem is 58.12/2.49 ≈ 23 as shown in Table 4.5. This is because the full

system matrix is sparse (A ∈ IR17899×17899 has 120,603 nonzero entries) while the re-

duced matrix is not (Ar ∈ IR150×150 has 22,500 nonzero entries). For this problem with

17899 states (which is relatively small), the offline cost of determining the reduced

model is not offset by computational savings in solving the optimal design problem,

unless there is a need to solve the optimization problem in real time (in which case
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the reduced model is essential). Chapter 6 presents a large-scale probabilistic analysis

application. It will be shown that in that case, the trade-off between the online and

offline cost is much more dramatic.

Table 4.5: Optimal design for the thermal fin problem with 11 parameters: full model
(17899 states) versus reduced models with 100 and 150 states.

Parameters Initial design Optimal solution Optimal solution Optimal solution
using the with 100 with 150
full model basis vectors basis vectors

κ1 2.8657 10.0 0.10 10.0
κ2 2.1151 10.0 10.0 10.0
κ3 0.1888 10.0 0.1 0.1
κ4 0.2349 5.25 10.0 10.0
κ5 0.1947 5.25 10.0 0.1
Bi 2.5531 5.0 5.0 5.0
b1 0.2529 5.0 5.0 5.0
b2 0.3324 10.0 10.0 10.0
b3 8.2753 10.0 10.0 10.0
b4 0.7236 2.5 2.5 2.5
b5 1.6142 5.0 5.0 5.0

Optimal 2.678e-03 2.673e-03 2.678e-03
output

CPU time 58.12s 6.15s 2.49s
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Chapter 5

Computational Fluid Dynamic

Models

Recent developments in the field of CFD have led to the use of higher-order finite

element discretizations for PDEs. These schemes have advantages over traditional

finite-volume methods by introducing higher-order accuracy compactly within grid

elements and thus providing a significant decrease in the computational cost to obtain

reliably accurate solutions. A Discontinuous Galerkin (DG) formulation is used in this

work. The unsteady flow solver described in this thesis is part of a larger effort that

includes an adaptive meshing utility, a multigrid solution algorithm, gradient-based

optimization capability, and high-order visualization [117].

In this chapter, a steady DG formulation for the Euler equations is first outlined.

A linearized unsteady DG formulation is then presented, and validated via numerical

comparisons with experimental data. Next, a linearized model for incorporating geo-

metric variability into the unsteady CFD model is described. Finally, the applicability

of the linearized geometric variability model is assessed via numerical experiments.

5.1 Steady CFD Model

In this section we briefly review the DG discretization and the solution method for

the two-dimensional Euler equations as in Cockburn and Shu [118] and Fidkowski
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and Darmofal [119]. The two-dimensional Euler equations are given by:

∂w

∂t
+ ∇ · F(w) = 0, (5.1)

where w is the conservative state vector,

w =











ρ

ρu

ρv

ρE











, (5.2)

and F = (Fx,Fy) is the inviscid Euler flux

Fx =











ρu

ρu2 + P

ρuv

ρuH











, Fy =











ρv

ρuv

ρv2 + P

ρvH











. (5.3)

In the above equations, ρ is the density, u and v are respectively the x− and y−component

of velocity, E is the energy, P is the pressure, and H = E +P/ρ is the total enthalpy.

The equation of state is

P = (γ − 1)

[

ρE −
1

2
ρ
(
u2 + v2

)
]

, (5.4)

where γ is the ratio of specific heats.

As in the continuous finite element method, the first step in the DG method is

to discretize the domain under consideration, Ω, into elements Ωe. Next, a space of

polynomials of degree at most p̄, U p̄
h(Ωe), is defined on each element, where h denotes a

representative element size for the discretization (e.g. the size of the smallest element).

On each element Ωe, the approximate solution wh can be found by enforcing the

108



nonlinear conservation law (5.1) locally, for all test functions vh ∈ U p̄
h(Ωe):

∫

Ωe

vT
h

∂wh

∂t
dΩe −

∫

∂Ωe

∇vT
h · F(wh)dΩe

+

∫

∂Ωe\∂Ω

(
v+

h

)T
H(w+

h ,w−
h , n̂)ds

+

∫

∂Ωe∩∂Ω

(
v+

h

)T
Hbd(w

+
h ,w−

h , n̂)ds = 0, (5.5)

where ∂Ω and ∂Ωe are the boundaries of the entire domain Ω and the element Ωe,

respectively, and n̂ denotes the outward-pointing normal on the boundaries of the

element. The terms H(w+
h ,w−

h , n̂) and Hbd(w
+
h ,w−

h , n̂) are numerical flux functions

for interior and boundary edges, respectively, where ()+ and ()− denote values taken

from the interior and exterior of the element. The interior flux function is computed

using the Roe-averaged flux function [120] and contributes over element boundaries

that do not belong to the domain boundary, denoted by ∂Ωe\∂Ω. The fluxes on the

common boundaries of ∂Ωe and ∂Ω, denoted by ∂Ωe ∩ ∂Ω, are computed using the

inner state and boundary condition data.

The final form of the DG discretization is constructed by selecting a basis for

U p̄
h(Ωe). The approximate solution wh on each element is assumed to be a linear

combination of the basis functions φj,

wh(t, x, y) =

nb∑

j=1

ŵj(t)φj(x, y), (5.6)

where ŵj(t) gives the modal content of φj on element Ωe, and nb is the number of

basis functions required to describe U p̄
h(Ωe) (e.g. nb = 1 for p̄ = 0 and nb = 3 for

p̄ = 1). The complete set of unknown quantities for the DG formulation comprises

the values of ŵj(t) for every element in the spatial domain. These quantities will be

contained in the vector w̄ ∈ IRn, where n is the total number of unknowns, which

depends both on the number of elements in the discretization and on the polynomial

order p̄.

For steady-state flows, pseudo time-stepping is used to improve the initial transient
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behavior of the solver. A backward Euler discretization in time is used so that the

final discrete equations are

E
1

∆t

(
w̄n+1 − w̄n

)
+ Q(w̄n+1) = 0 (5.7)

where ∆t is the timestep, w̄n is the solution w̄ at a time tn, E is the mass matrix,

and Q is the vector representing the final three terms of (5.5). This nonlinear system

is solved using a p̄-multigrid scheme with a line Jacobi smoother [117, 119].

5.2 Unsteady CFD Model

The unsteady Euler equations using the DG spatial discretization can be written

E
dw̄

dt
+ Q(w̄,u) = 0 (5.8)

where u(t) ∈ IRp is a vector containing p external forcing inputs, such as prescribed

motion of the domain boundary or incoming flow disturbances. In addition, we define

a set of q output quantities of interest, contained in the vector y ∈ IRq and defined

by the nonlinear function P

y = P(w̄). (5.9)

For unsteady computations, a second-order backward Euler temporal discretiza-

tion is applied to (5.8). The resulting nonlinear equations are solved using a Newton

solver. Grid motion is implemented using a simple Jacobi smoothing formulation. The

motion of grid point j is defined by the change in x− and y−coordinates, (δxj , δyj),

and computed as

δxj =
1

r

∑

k∈Nj

δxk, δyj =
1

r

∑

k∈Nj

δyk (5.10)

where r is the number of the neighbors chosen to influence the grid point j and Nj is

the set containing the corresponding set of r neighboring points. Larger values of r

lead to increased grid motion and smoother grids. The motion of grid points on the

domain boundary is prescribed according to the corresponding external input (e.g.
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prescribed motion of an airfoil).

In many cases of interest, the unsteady flow solution can be assumed to be a small

perturbation from steady-state conditions. This allows the unsteady governing equa-

tions to be linearized, which reduces the computational cost of solution considerably.

The linearized version of equations (5.8, 5.9) can be written in standard state-space

form, which is a special case of the general model (2.4) that is obtained from the DG

CFD linearization,

E
dx

dt
= Ax + Bu, y = Cx, (5.11)

where x ∈ IRn is the state vector containing the n perturbations in flow unknowns

from the steady-state solution w̄ss, that is w̄(t) = w̄ss+x(t). The matrices A ∈ IRn×n,

B ∈ IRn×p, and C ∈ IRq×n in (5.11) have constant coefficients evaluated at steady-

state conditions and arise from the linearization of (5.8) and (5.9) as follows.

A =
∂R

∂w̄
, B =

∂R

∂u
, C =

∂P

∂w̄
. (5.12)

By considering harmonic inputs at a frequency ω, u = ūejωt, the linearized equa-

tions (5.11) can also be written in the frequency domain as

[jωE−A] x̄ = Bū, ȳ = Cx̄, (5.13)

where x = x̄eiωt and y = ȳeiωt.

5.3 CFD Model Validation

Results are presented for two unsteady examples: a NACA 0012 airfoil and the first

standard cascade configuration. Results are shown to validate the unsteady CFD

models by comparison with airfoil and cascade experimental data.
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5.3.1 NACA 0012 Airfoil Example

Figure 5-1 shows nonlinear and linearized CFD results compared with experimental

data [1] for a NACA 0012 airfoil in rigid pitching motion. The steady-state flow

has a Mach number of 0.6 and angle of attack of 2.89◦. The unsteady simulation

is then carried out with the pitching input α(t) = 2.41 sin(0.8874t), where α(t) is

the perturbation angle about the steady state angle of attack. Figure 5-1 shows

the pressure coefficient distribution at one particular instant in time; it can be seen

that the nonlinear CFD predictions match well with the experimental data. There

is a region with a weak shock on the upper surface that the linearized code cannot

resolve. Elsewhere the agreement between the experimental data and linearized model

is acceptable.
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Figure 5-1: Comparison of CFD predictions and experimental data [1] for NACA
0012 airfoil in unsteady pitching motion. The pressure coefficient distribution on the
airfoil surface is shown for t = 0.00311.

5.3.2 The First Standard Cascade Configuration Example

Unsteady computations for cascade flows can be carried out efficiently by exploiting

spatial periodicity and linearity. By working with the frequency domain equations
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(5.13), complex periodicity conditions can be used to represent the effects of neighbor-

ing blade passages for each interblade phase (IBP) angle [121]. All cascade linearized

CFD computations are therefore performed in the frequency domain on a single blade

passage. Similarly, this periodicity can be exploited to provide efficient implementa-

tions for creating the reduced-order model.

For cascade flows, experimental data for a number of standard configurations

are available [122]. The first standard configuration with a steady-state inflow Mach

number of 0.18 and flow angle β of 62◦ is considered. The cascade operates in unsteady

rigid pitching motion. Both experimental data and other CFD data [123, 124] are

taken from Bolcs and Fransson [122] and Fransson and Verdon [125]. Figures 5-2

and 5-3 show the magnitude and the phase of the unsteady pressure coefficients on

the first blade as a function of pitching frequency at an IBP of σ = 45◦. Figures

5-4 and 5-5 show the pressure coefficients at σ = −45◦. It can be seen that the DG

linearized results are comparable to other CFD results and are acceptably close to the

experimental data. It should be noted that the DG method is very sensitive to the

geometry representation of the blade. A very coarse cascade geometry is available

from Bolcs and Fransson [122]. This geometry is then splined to obtain smoother

blade surfaces. It is expected that a more accurate result could be obtained with the

DG method if more accurate geometry data were available.

5.4 Geometric Variability Model

Mistuning, or blade-to-blade variation, is an important consideration for aeroelastic

analysis of bladed disks, since even small variations among blades can have a large

impact on the forced response and consequently the high-cycle fatigue properties of

the engine. The effects of blade structural mistuning (variations in mass and stiffness

properties) have been extensively studied, see for example Refs. 14–19; however, due

to the prohibitively high computational cost of performing probabilistic analysis with

a CFD model, the aerodynamic effects due variations in geometry are less under-

stood. Lim et al. [126] have incorporated geometric mistuning effects into structural
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Figure 5-2: First standard configuration in unsteady pitching motion with M = 0.18,
β = 62◦. Magnitude and phase of the unsteady pressure coefficient distribution on
the lower surface with σ = 45◦.
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Figure 5-3: First standard configuration in unsteady pitching motion with M = 0.18,
β = 62◦. Magnitude and phase of the unsteady pressure coefficient distribution on
the upper surface with σ = 45◦.
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Figure 5-4: First standard configuration in unsteady pitching motion with M = 0.18,
β = 62◦. Magnitude and phase of the unsteady pressure coefficient distribution on
the lower surface with σ = −45◦.
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Figure 5-5: First standard configuration in unsteady pitching motion with M = 0.18,
β = 62◦. Magnitude and phase of the unsteady pressure coefficient distribution on
the upper surface with σ = −45◦.
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responses of bladed disks. In their work, the mode-acceleration method was used to

convert the effect of geometric mistuning to that of external forces of the tuned disks.

Truncated sets of tuned system modes compensated by static modes—generated by

external forces that were constructed from mistuning—were then used to obtain effi-

cient and accurate structural reduced models.

Since the manufactured geometric mistuning space is large, Garzon and Darmofal

[127–129], Brown et al. [130], Ghiocel [131], and Sinha et al. [132] have used the

principle component analysis (PCA) [133] to construct a reduced geometric variability

model. It was found that a handful of PCA geometric variability modes can capture

the manufactured variability well. In particular, Garzon and Darmofal [127–129] have

used the reduced geometric variability model to investigate the impact of geometric

variability on axial compressor steady aerodynamic performance using Monte Carlo

simulation based on a large-scale nonlinear CFD model. They found that the mean

loss under the presence of geometric mistuning was approximately 20% larger than

the nominal loss. Since each large-scale nonlinear CFD simulation is very expensive,

parallel computers were used in order to perform the probabilistic analysis using

Monte Carlo simulation. Here we consider incorporating the effects of geometry

variability into the linearized unsteady CFD model.

Following Ref. 127, a general geometry, g, can be expressed as

g = gn + ḡ +

ns∑

i=1

σizivi, (5.14)

where gn is the nominal geometry, ḡ is the average geometric variation, vi are ge-

ometric mode shapes, and ns is the number of mode shapes used to represent the

variation in geometry. The geometric mode shapes could be computed, for example,

by performing the PCA on a manufacturing sample of geometries. In that case, the

parameters zi in (5.14) are random numbers normally distributed with zero mean

and unity variance, zi ∈ N(0, 1), and σi is the standard deviation of the geometric

data attributable to the ith mode; thus the product σizi is the amount by which the

mode vi contributes to the geometry g. A detailed description of the methodology
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underlying this geometric model can be found in Ref. 127.

The key assumption in (5.14) is that any manufacturing geometry is a linear

combination of geometries in the manufacturing geometry sample. In other words,

the manufacturing geometry sample is assumed to be large enough to span the entire

mistuning space.

5.5 Linearized Unsteady CFD Model with Geo-

metric Variability

Using the model (5.14), a general geometry g(z) is specified by the parameter vector

z = [z1, z2, . . . , zns
]T , which describes the geometry variability in terms of the ge-

ometry modes. The linearized CFD system corresponding to geometry g(z) is given

by

E(w̄ss(g(z)), g(z))ẋ = A(w̄ss(g(z)), g(z))x + B(w̄ss(g(z)), g(z))u, (5.15)

y = C(w̄ss(g(z)), g(z))x, (5.16)

where the CFD system matrices E,A,B and C are in general both a function of

the geometry, g(z), and of the steady-state solution, w̄ss(g(z)), which is itself also a

function of the geometry. To solve the CFD system (5.15), (5.16), for each geometry

g we must firstly compute the steady-state solution, w̄ss(g(z)), secondly evaluate the

linearized matrices E,A,B and C, and thirdly solve the resulting large-scale linear

system. This is a computationally prohibitive proposition for applications such as

probabilistic analysis, where thousands of geometry perturbations may be analyzed

over many random samples z. For example, if one such analysis takes three minutes

to perform, then 50,000 analyses would take more than three months of CPU time!

For convenience of notation, we write the dependence of the CFD matrices on

the parameter z as E(w̄ss(g(z)), g(z)) = E(z), A(w̄ss(g(z)), g(z)) = A(z),

B(w̄ss(g(z)), g(z)) = B(z), and C(w̄ss(g(z)), g(z)) = C(z). We use the expan-

sion given by equation (5.14), which represents a general geometry as a perturbation
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about the average geometry g0 = gn + ḡ, to derive an approximate model for repre-

senting the effects of geometry variations. Instead of computing the linearized CFD

matrices exactly for any random variability z, we choose to linearize the relationships

E(z), A(z), B(z), and C(z) [65,66]. A more general approach for a general nonlinear

function can be found in Barrault et al. [61,62,68]. We define the linearized unsteady

CFD model for the average geometry g0 = gn + ḡ by the matrices E0, A0, B0, and

C0, with corresponding solution x0. That is, for z = 0 we have

E0ẋ0 = A0x0 + B0u, (5.17)

y0 = C0x0. (5.18)

Using a Taylor series expansion about z = 0 for the matrix A(z) gives

A(z) = A0 +
∂A

∂z1

∣
∣
∣
∣
z=0

z1 + . . . +
∂A

∂zns

∣
∣
∣
∣
z=0

zns
+ . . . , (5.19)

where the matrix partial derivatives denote componentwise derivatives, which can be

evaluated through application of the chain rule. These derivatives are evaluated at

average conditions, z = 0. The matrices E(z),B(z) and C(z) can be expanded using

formulae analogous to (5.19).

If the geometric variability (given by the product σizi) is sufficiently small, the

constant and linear terms in the Taylor expansion (5.19) are sufficient to approximate

the linearized matrices A(z) accurately, that is,

A(z) ≈ A0 +
∂A

∂z1

∣
∣
∣
∣
z=0

z1 + . . . +
∂A

∂zns

∣
∣
∣
∣
z=0

zns
. (5.20)

For i = 1, 2, . . . , ns, we define

Ēi =
∂E

∂zi

∣
∣
∣
∣
z=0

, Āi =
∂A

∂zi

∣
∣
∣
∣
z=0

, B̄i =
∂B

∂zi

∣
∣
∣
∣
z=0

, C̄i =
∂C

∂zi

∣
∣
∣
∣
z=0

, (5.21)

where the matrices Ēi, Āi, B̄i, and C̄i can be computed, for example, using a finite

difference approximation of the respective derivatives. The approximate linearized
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CFD model for any geometric variability z is then given by

(

E0 +
ns∑

i=1

Ēizi

)

︸ ︷︷ ︸

E(z)

ẋ =

(

A0 +
ns∑

i=1

Āizi

)

︸ ︷︷ ︸

A(z)

x +

(

B0 +
ns∑

i=1

B̄izi

)

︸ ︷︷ ︸

B(z)

u, (5.22)

y =

(

C0 +

ns∑

i=1

C̄izi

)

︸ ︷︷ ︸

C(z)

x. (5.23)

It should be noted here that a number of large-scale steady state CFD solves are

required in order to determine the matrices A0, B0, C0, E0, Āi, B̄i, C̄i and Ēi. For

example, if central difference approximations to the matrix derivatives are used, a

total of 2
∑ns

i=1 +1 large-scale steady state CFD solves is required. This is a one-

time offline cost; once the matrices are computed, the approximate linearized system

(5.22), (5.23) can be readily evaluated for an arbitrary geometry g(z) without running

the CFD steady solver. It is important to know that the size and components of A(z)

are a function of the CFD grid. The CFD grid is in turn a function of the geometry,

which is in turn a function of geometric variability z. This implies that, for the finite

difference to be accurate, the grid generation must satisfy the requirements that the

size of the linearized matrices be the same for any geometric variability and that

the components of the linearized matrices be a smooth function of the geometric

variability z. In order to satisfy these requirements, we first generate a CFD grid

for the average geometry g0 = gn + ḡ. The grid for any new geometry corresponding

to a nonzero geometric variability z is then generated by adding the perturbation
∑ns

i=1 σizivi to the boundary grid points and computing the new grid points using the

Jacobi smoothing in (5.10).

It should also be noted that the model (5.22), (5.23) is valid only for small varia-

tions from the average geometry. Larger variations will incur larger errors, due to the

neglect of the higher-order terms in the Taylor series expansion. In the next section,

we present some analyses to quantify these errors. Even with this restriction, the

model is useful for many applications where small geometric variations are of inter-
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est; however, the approximate linearized model is still of high dimension, and thus is

computationally too expensive for applications such as probabilistic analysis in which

one needs to determine the unsteady aerodynamic response for many random geome-

tries. In Chapter 6 we further reduce the cost of solving the approximate linearized

system by using the model reduction method developed in Chapter 3 to create a

reduced-order model that is accurate over both time and the geometric parameter

space, described here by the vector z.

5.6 Linearized Geometric Variability CFD Model

Validation

Results are presented for forced response of a subsonic rotor blade that moves in

unsteady rigid motion. The flow is modeled using the two-dimensional Euler equations

written at the blade mid-section. The average geometry of the blade is shown in

Figure 5-6 along with the unstructured grid for a single blade passage, which contains

4292 triangular elements. The Euler equations are discretized in space with the

discontinuous Galerkin (DG) method described in Section 5.1. For the case considered

here, the incoming steady-state flow has a Mach number of M = 0.113 and a flow angle

of β = 59◦. Flow tangency boundary conditions are applied on the blade surfaces.

Since the rotor is cyclically symmetric, the steady flow in each blade passage is the

same and the steady-state solution can be computed on a computational domain that

describes just a single blade passage. Periodic boundary conditions are applied on the

upper and lower boundaries of the grid to represent the effects of neighboring blade

passages.

A linearized model is derived for unsteady flow computations by assuming that

the unsteady flow is a small deviation from steady state as described in Section 5.2.

An affine dependence of the linearized system matrices on the blade geometries is

derived using the method described in Section 5.5. This leads to a system of the

form (5.22), (5.23), where the state vector, x(t), contains the unknown perturbation
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Figure 5-6: Geometry and CFD mesh for a single blade passage.

flow quantities (density, Cartesian momentum components and energy). For the DG

formulation, the states are the coefficients corresponding to each nodal finite element

shape function. Using linear elements, there are 12 degrees of freedom per element,

giving a total state-space size of n = 51, 504 states per blade passage. For the problem

considered here, the forcing input, u(t), describes the unsteady motion of each blade,

which in this case is assumed to be rigid plunging motion (vertical motion with no

rotation). The outputs of interest, y(t), are the unsteady lift forces and pitching

moments generated on each blade. The initial perturbation flow is given by x0 = 0.

Geometric modes were computed using a PCA model of data from 145 actual

blades, measured at thirteen sections along the radial direction. The mid-section

geometries were then extracted. Thus the parameter vector z contains the normally

distributed random variables that describe perturbations in the geometry of each

blade according to the model (5.14). Since the approximate linearized CFD model is

only valid for small variations from the average geometry, the standard deviation of

the actual manufacturing data was reduced by a factor of 6. As the results below show,

this ensures that the geometric model remains in its region of applicability; however,

it also highlights a limitation in the geometric model used here. By including ideas

from [61,62, 68] to handle a general nonlinear term in an efficient way together with

the framework proposed here, a more general geometric model could be derived that
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is applicable for larger geometric deviations.

In Figure 5-7, we consider a geometric model that uses the two dominant variabil-

ity modes, ns = 2. The figure shows the lift coefficient, CL, and moment coefficient,

CM , of a blade in response to a pulse input in plunge for a particular geometry

that corresponds to z1 = 1.59, z2 = 1.59. The response is computed using the exact

linearized CFD model, i.e. the system (5.15), (5.16) and the approximate linearized

model (5.22), (5.23) with ns = 2 geometry modes. For reference, the response of

the nominal blade is also shown in the figure. It can be seen that despite the small

perturbation in geometry, the change in lift and moment coefficient responses is sig-

nificant. The approximate linearized geometric model captures the unsteady response

accurately.

0 20 40 60 80 100 120
−5

−4

−3

−2

−1

0

1

2

3
x 10

−3

time

C
L, C

M

 

 

CMexact
CLexact
CMapprox
CLapprox
CMNominal
CLNominal

Figure 5-7: Lift coefficient, CL, and moment coefficient, CM , in response to a pulse
input in blade plunge displacement for the nominal geometry and a perturbed geom-
etry described by two geometric PCA modes with z1 = 1.59, z2 = 1.59. Perturbed
geometry results are computed with both the exact and approximate linearized CFD
model.

Table 5.1 shows the error in lift and moment outputs due to the linearized geome-

try approximation for several different blade geometries with a pulse input in plunge.

The error e is defined as the 2-norm of the difference between the approximate and

the exact linearized output as a percentage of the change between the exact and the
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nominal output,

e =

√
∫ tf
0

‖ye − ya‖2
2dt

√
∫ tf

0
‖ye − yo‖2

2dt
× 100%, (5.24)

where ye, ya, and yo are respectively the exact, approximate, and nominal outputs.

In the table, eCM
denotes the error in moment coefficient response, while eCL

denotes

the error in lift coefficient response. In general, we expect the quality of the approx-

imate model to be compromised as the size of the geometric perturbation increases.

The errors shown in Table 5.1 for blade geometries in the tails of the distribution,

i.e. those with large geometry variation, are deemed to be acceptable for the proba-

bilistic application of interest here (although again we note that the actual variations

observed in manufacturing data are larger). In fact, as will be shown in probabilistic

analysis in Chapter 6, the error in aggregate quantities will be shown to be less. For

applications where greater accuracy for large geometry variations is important (for

example, determining the probability of failure would require the tail of the distribu-

tion to be resolved accurately), the results suggest that the approximate linearized

CFD system is not appropriate. In such cases, one might consider including high

order terms in (5.20), the Taylor series expansion of the CFD matrices.

Table 5.1: Error in approximate linearized model predictions for a pulse input in
blade displacement for several different geometries.

Variability amplitudes eCM
(%) eCL

(%)

z1 = 1.59, z2 = 1.59 5.04 2.6
z1 = 1.59, z2 = −1.59 0.3 0.1
z1 = −1.59, z2 = −1.59 2.0 0.8
z1 = 3.0, z2 = 3.0 16.6 9.2
z1 = 3.0, z2 = −3.0 4.1 2.3
z1 = −3.0, z2 = −3.0 12.4 4.7
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Chapter 6

CFD Probabilistic Analysis

Application

The chapter begins with a numerical result for the Petrov-Galerkin projection in Sec-

tion 2.3. The Petrov-Galerkin projection is then applied to obtain reduced models

for all examples that follow. The model-constrained greedy-based adaptive sampling

approach developed in Chapter 3 is applied to probabilistic analysis problems that de-

pend on a large number of parameters. In particular, probabilistic analysis problems

with four and ten geometric variability parameters will be considered. Finally, we

compare the model-constrained sampling method with statistically-based sampling

methods in the context of snapshot generation for model reduction for the probabilis-

tic analysis problems with four and ten geometric variability parameters.

6.1 Galerkin Projection versus Petrov-Galerkin Pro-

jection

First, we present results to emphasize the importance of using an appropriate pro-

jection basis to perform the reduction. In particular, we verify the stability and the

convergence of the projection method discussed in Section 2.3, in which the resid-

uals are minimized sequentially. We consider a subsonic rotor blade that moves in
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unsteady rigid motion, as described in Section 5.6. In this example, the nominal

geometry with zero interblade phase angle, i.e. IBP = 0◦, is used. The linearized

CFD system (5.11) therefore does not depend on the geometric variability vector z,

and the unsteady flow can be computed on a computational domain which describes

just a single blade passage. The forcing input, u(t) is assumed to be rigid plunging

motion (vertical motion with no rotation). The output of interest, y, is the unsteady

lift force generated on the blade. The initial perturbation flow is given by x0 = 0.

Snapshots are taken by computing the response of the blade to a pulse input in

plunging motion. For this input, the blade vertical position as a function of time is

given by

h(t) = h̄e−g(t−t0)2 , (6.1)

where the parameters h̄ = 0.1, g = 0.02, and t0 = 40 are chosen based on the range

of motions that are expected in practice, and all quantities are non-dimensionalized

with the blade chord as a reference length and the inlet speed of sound as a reference

velocity. The unsteady simulation is performed with a timestep of ∆t = 0.1 from

t = 0 to tf = 200. A set of POD basis vectors is computed from this collection of

2000 snapshots and is used as the trial reduced basis Φ.

This example is of interest since the reduced model is unstable, depending on

the number of reduced basis vectors, if the usual Galerkin projection is used. Here

we guarantee the stability of the reduced model by minimizing the residual at each

time step sequentially, and hence by the Petrov-Galerkin projection (2.35) in Chap-

ter 2. The comparison between the Galerkin-projection-based and Petrov-Galerkin-

projection-based reduced models can be seen in Figure 6-1. Note that we have used

the same POD basis vectors for both methods. As expected, the Petrov-Galerkin ap-

proach is stable and improves the reduced model as more basis vectors are used while

the Galerkin approach yields unstable models for any basis size less than m = 10.
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(b) Petrov-Galerkin POD with 2 basis vec-
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(c) Galerkin POD with 8 basis vectors
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Figure 6-1: Comparison between the conventional Galerkin projection and the Petrov-
Galerkin projection approaches. Solid lines are the full (exact) solution and dashed
lines are reduced model results.
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6.2 Probabilistic Analysis Application

The model-constrained adaptive model reduction method is applied to probabilistic

analysis of a subsonic rotor blade that moves in unsteady rigid motion. Using Monte

Carlo simulation (MCS) of a CFD model to quantify the impact of geometric vari-

ability on unsteady performance is a computationally prohibitive proposition. For

example, if the unsteady analysis for one geometry takes three minutes to compute

(a conservative estimate), the O(50, 000) such analyses that would be required for a

MCS would take more than three months of CPU time. Therefore, we desire to ob-

tain a reduced-order model that captures both unsteady response and variation over

blade geometries. Our method combines the reduced geometric variability model

and the model-constrained adaptive sampling procedure of Algorithm 3.1 to obtain

a reduced-order model that is valid over a range of forcing frequencies, aerodynamic

damping, and small perturbations in blade geometries, and thus enables fast and

accurate probabilistic analysis.

Results are shown here for the case of two blades moving with an interblade phase

angle of 180◦. First, each blade geometry is represented by two variability modes,

giving d = ns = 4 geometric parameters in this example. Applying the adaptive

model reduction methodology with ε = 10−4 and with the lift coefficients of the

blades as the outputs of interest yields a reduced-order model of size nr = 201 (for

two blades). Again, in each greedy cycle, the number of Newton steps is observed

to scale as O(d). Algorithm 3.1 requires 21 greedy cycles, over which a total of 21

optimal parameter points are found. Recall that when using the error indicator, the

snapshots are only computed at the optimal parameters. Therefore, the full model

is solved 21 times, and this computational cost dominates the other calculations. At

each optimal parameter point, unlike the steady cases in which only one snapshot is

found, for unsteady cases, 401 snapshots are taken uniformly over the time horizon

tf = 200. These snapshots are then used to update the reduced basis using a strategy

similar to the third method in Table 4.3. That is, the newly computed snapshots are

pre-processed by the POD method (where η = 0.99999999), and the dominant POD
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basis vectors are then added to the current reduced basis using the Gram-Schmidt

procedure. The geometric variability parameters, z, are random numbers normally

distributed with zero mean and unity variance, 99.7% of which are distributed in

the interval [−3.0, 3.0]. The bound constraints for all parameters, in the greedy

optimization problem, are therefore chosen to be

−3.0 ≤ zi ≤ 3.0, i = 1, . . . , d. (6.2)

Finally, the training input u(t) is chosen to be the pulse function in (6.1).

We now have a reduced model of size nr = 201 that accurately captures the

unsteady response of the original two-blade system with n = 103, 008 states over the

range of geometries described by the four geometric parameters. As an example of an

application for which this reduced model is useful, we consider probabilistic analysis

of the system. Specifically, we consider the impact of blade geometry variabilities on

the work per cycle, which is defined as the integral of the blade motion times the lift

force over one unsteady cycle. A MCS is performed in which 10,000 blade geometries

are selected randomly from the given distributions for each blade. The same 10,000

geometries are analyzed using the approximate linearized CFD model and the reduced

model. Figure 6-2 shows the resulting probability density functions (PDFs) of work

per cycle for the first blade, computed using the approximate linearized CFD model

and the reduced-order model. Figure 6-3 shows the PDFs of work per cycle for the

second blade. Table 6.1 shows that the online CPU time required to compute the

reduced model MCS is a factor of 2414 times smaller than that required for the CFD

MCS. As can be also seen, the savings in the online cost are substantial, and more

than justify the offline cost required to compute the reduced model. In practice, many

more than 10,000 blade geometries are required to obtain a converged MCS; in this

case, the computational cost of using the CFD model becomes prohibitive. These

computational results were obtained on a dual core 64-bit personal computer with

3.2GHz Pentium processor. Tables 6.1 also shows the number of nonzeros in the full

system matrix (sparse), A, and the reduced system matrix (dense), Ar.
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(b) Reduced WPC for Blade 1

Figure 6-2: Comparison of linearized CFD and reduced-order model predictions of
work per cycle (WPC) for Blade 1. MCS results are shown for 10,000 blade geometries
with four parameters. The same geometries are analyzed in each case. Dashed line
denotes the mean.
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(b) Reduced WPC for Blade 2

Figure 6-3: Comparison of linearized CFD and reduced-order model predictions of
work per cycle for Blade 2. MCS results are shown for 10,000 blade geometries for the
case of four parameters. The same geometries were analyzed in each case. Dashed
line denotes the mean.
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Table 6.1 also compares the statistics of the two distributions. It can be seen from

Figure 6-2, Figure 6-3 and Table 6.1 that the reduced-order model predicts the mean,

variance and shape of the distribution of work per cycle accurately. To further verify

the quality of the reduced model, we apply the Kolmogorov-Smirnov method [134],

to test whether the reduced work per cycle results and the full work per cycle results

are drawn from a same distribution. The results show that we cannot reject the

hypothesis that the distribution is the same at a 5% significance level. It should be

pointed out the Kolmogorov-Smirnov method is based on the maximum difference

between the empirical cumulative distribution functions of work per cycle of the full

and the reduced models. As shown in Figure 6-4 for Blade 1, the empirical cumulative

distribution functions of work per cycle of the full and the reduced models are close

to one another.

To further compare the reduced-order and CFD results, we pick four particular

geometries corresponding to the left tail, right tail, mid-left and mid-right locations

on the PDF of the first blade as indicated by the circles in Figure 6-2(a). In Table 6.2,

the work per cycle is given for these four blade geometries as computed by the exact

CFD model, the approximate linearized CFD model, and the reduced-order model.

The table shows that again the approximate linearized CFD is in good agreement

with the exact CFD, especially for the mid-left and mid-right cases, which have

Table 6.1: Linearized CFD model and reduced-order model MCS results for the case
of four parameters. Work per cycle (WPC) is predicted for blade plunging motion at
an interblade phase angle of 180◦ for 10,000 randomly selected blade geometries.

CFD Reduced

Model size 103,008 201
Number of nonzeros 2,846,056 40,401
Offline cost — 2.8 hours
Online cost 501.1 hours 0.21 hours
Blade 1 WPC mean -1.8572 -1.8573
Blade 1 WPC variance 2.687e-4 2.6819e-4
Blade 2 WPC mean -1.8581 -1.8580
Blade 2 WPC variance 2.797e-4 2.799e-4

131



−1.95 −1.9 −1.85 −1.8 −1.75
0

0.2

0.4

0.6

0.8

1

WPC

F
(W

P
C

)

Empirical CDF

 

 

Full Blade 1

Reduced Blade 1

Figure 6-4: Comparison of the approximate linearized CFD and the reduced-order
model empirical cumulative distribution functions (CDF) of work per cycle (WPC).
The results are shown for 10,000 blade geometries for the case of four parameters.
The same geometries were analyzed for both the full CFD and its reduced model.

smaller variability. In addition, the effectiveness of the adaptive model reduction

methodology of Algorithm 3.1 can be seen from the good agreement between the

approximate linearized CFD and the reduced results.

Table 6.2: Exact CFD, approximate CFD, and reduced-order model work per cycle
prediction for the four geometries indicated in Figure 6-2(a).

Exact Approximate Reduced

Left tail -1.8973 -1.9056 -1.9060
Mid-left -1.8637 -1.8636 -1.8638
Mid-right -1.8459 -1.8455 -1.8458
Right tail -1.8014 -1.8086 -1.8088

Next, we consider the case in which each blade geometry is represented by five

variability modes, giving d = ns = 10 geometric parameters in this example. Applying

the adaptive model reduction methodology with ε = 10−4 and with the lift coefficients

of the blades as the outputs of interest yields a reduced-order model of size nr = 290
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(for two blades). Algorithm 3.1 requires 29 greedy cycles, over which a total of 29

optimal parameter points are found.

We now have a reduced model of size nr = 290 that accurately captures the

unsteady response of the original two-blade system with n = 103, 008 states over

the range of geometries described by the ten geometric parameters. A MCS is then

performed in which 10,000 blade geometries are selected randomly from the given

distributions for each blade. The same 10,000 geometries are analyzed using the

approximate linearized CFD model and the reduced model. Figure 6-5 shows the

PDFs of work per cycle for the first blade. Figure 6-6 shows the PDFs of work per

cycle for the second blade. Table 6.3 shows that the online CPU time required to

compute the reduced model MCS is a factor of 468 times smaller than that required

for the CFD MCS. Note that the observed speed-up factor in this case is smaller than

that observed in the case of four parameters. This is due to the fact that not only

we have more parameters but also the reduced model size is now larger. Nonetheless,

the savings in the online cost are substantial and offset the offline cost.
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Figure 6-5: Comparison of linearized CFD and reduced-order model predictions of
work per cycle for Blade 1. MCS results are shown for 10,000 blade geometries with
ten parameters. The same geometries are analyzed in each case. Dashed line denotes
the mean.

Table 6.3 also compares the statistics of the two distributions. It can be seen

from Figure 6-5, Figure 6-6 and Table 6.3 that the reduced-order model predicts the
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Figure 6-6: Comparison of linearized CFD and reduced-order model predictions of
work per cycle for Blade 2. MCS results are shown for 10,000 blade geometries for
the case of ten parameters. The same geometries are analyzed in each case. Dashed
line denotes the mean.

Table 6.3: Linearized CFD model and reduced-order model MCS results for the case
of ten parameters. Work per cycle (WPC) is predicted for blade plunging motion at
an interblade phase angle of 180◦ for 10,000 randomly selected blade geometries.

CFD Reduced

Model size 103,008 290
Number of nonzeros 2,846,056 84,100
Offline cost — 10.92 hours
Online cost 515.61 hours 1.10 hours
Blade 1 WPC mean -1.8583 -1.8515
Blade 1 WPC variance 0.0503 0.0506
Blade 2 WPC mean -1.8599 -1.8583
Blade 2 WPC variance 0.0136 0.0138
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mean, variance and shape of the distribution of work per cycle accurately. Again, to

further verify the quality of the reduced model, we apply the Kolmogorov-Smirnov

method, to test whether the reduced work per cycle results and the full work per

cycle results are drawn from a same distribution. The results show that we cannot

reject the hypothesis that the distribution is the same at a 5% significance level.

It should be also pointed out that compared to the case with four parameters, the

variances of work per cycle of the 10-parameter case are larger; however the means are

almost the same. This is because as more geometric variability parameters are added,

and hence more POD modes (which are variations about the average geometry) are

added in (5.14), more variability is added to the blade geometries. It is therefore

expected that the variances of work per cycle increase as more geometric variability

parameters are included, while the means stay the same.

Next, we compare the model-constrained sampling method with statistically-based

sampling methods in the context of snapshot generation for model reduction of the

linearized CFD model. In particular, we compare our model-constrained sampling

with LHS sampling, logarithmic random sampling, and CVT sampling. Tables 6.4

and 6.5 show the percentage errors in predicting the means and variances of work

per cycle of the resulting reduced models for the case with four and ten geometric

variability parameters. The percentage error in predicting the quantity h (h can be

the mean or the variance of work per cycle) is defined as

Percentage error =
|hreduced − hfull|

|hfull|
× 100%, (6.3)

where hfull and hreduced are the corresponding values obtained from the full and the

reduced models, respectively. As can be seen, the quality of the resulting reduced

models is similar. While the system matrices of the steady thermal fin problem in

(4.14)–(4.16) are nonlinear functions of the parameters, the system matrices of the

linearized CFD model in (5.22)–(5.23) are linear functions of the geometric vari-

ability parameters. As a result, the parameter-to-output relation for the linearized

CFD model is expected to be weakly nonlinear, and thus statistically-based sampling
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methods may be expected to perform adequately. In particular, for problems that

are linear in the state vector, if the parameter-to-output relation is also linear, with

one sample point, all methods yield a same reduced model. In addition, as mentioned

in Section 6.2, the bound constraints of the parameters in the linearized CFD model

are relatively small as compared to those in the steady thermal fin problem. For

a small parameter range, unless the problem under consideration is very nonlinear

with respect to the parameters in that small parameter range, it is expected that the

sampling methods will perform adequately.

Table 6.4: Model-constrained (MC) adaptive sampling method versus logarithmic
random (LogRandom) sampling, LHS and CVT for the case with four geometric
variability parameters. For all methods, 21 sample points are generated, and the
percentage errors in predictions of means and variances of work per cycle (WPC) of
the resulting reduced models are shown for 10,000 randomly selected blade geometries.

MC (%) LogRandom (%) LHS (%) CVT (%)

Blade 1 WPC mean 0.00789 0.01298 0.0231 0.0176
Blade 1 WPC variance 0.2 1.44 0.657 1.544
Blade 2 WPC mean 0.003 0.01299 0.02113 0.0132
Blade 2 WPC variance 0.083 0.16 0.647 0.315

Table 6.5: Model-constrained (MC) adaptive sampling method versus logarithmic
random (LogRandom) sampling, LHS, and CVT for the case with ten geometric
variability parameters. For all methods, 29 sample points are generated, and the
percentage errors in predictions of means and variances of work per cycle (WPC) of
the resulting reduced models are shown for 10,000 randomly selected blade geometries.

MC (%) LogRandom (%) LHS (%) CVT (%)

Blade 1 WPC mean 0.3682 0.0428 0.025 0.029
Blade 1 WPC variance 0.6082 3.4950 0.3211 0.3759
Blade 2 WPC mean 0.0869 0.091 0.0054 0.0209
Blade 2 WPC variance 1.879 4.819 2.435 0.055
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Chapter 7

Conclusions and Recommendations

7.1 Thesis Summary and Contributions

In this thesis, we have proposed a model-constrained greedy-based adaptive sampling

approach to address the challenge of sampling high-dimensional parameter spaces for

model reduction of large-scale systems. The method provides a systematic procedure

for sampling the parametric input space, and the forcing input space. In particular,

we formulate the sampling problem as an optimization problem that targets an error

estimation (which could be an output error indicator, an output error bound, or the

true output error) of reduced model output prediction. The optimization problem

is defined by introducing as constraints the systems of equations representing the

reduced model (and possibly the full model if the true output error is targeted). The

optimization formulation treats the parameter space as continuous; that is, we do

not require a priori selection of a discrete training parameter set. Further, since any

error estimation can be used as our selection criteria, our approach is applicable in

cases for which output error bounds are unavailable. Finally, we use a state-of-the-

art optimization technique, namely the subspace trust-region interior reflective inex-

act Newton-CG method, to solve the resulting greedy PDE-constrained optimization

problem.

In principle, one can treat the forcing input as another parameter, albeit a special

parameter, and the adaptive sampling method can be applied for both parametric
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input space and unsteady forcing space.

We have also provided an analysis of the model-constrained adaptive sampling

approaches with two key results as follows. First, the greedy optimization problem

is well-posed in the sense that there exists at least one solution. Second, if the full

model is linear in the state vector, then the adaptive sampling approach will never

sample at the previous sampled points in the parameter space.

The model-constrained adaptive sampling approach has been applied to a steady

thermal fin optimal design problem and to probabilistic analysis of geometric variabil-

ity in a turbomachinery application. While these two examples are both linear in the

state vector, our sampling approach could also be applied to general nonlinear prob-

lems. In the nonlinear case, efficiency of the reduced model could be addressed, for

example, using the interpolation method of [61,62,68]. In the following, we summarize

the results and the conclusions from numerical studies of these two examples.

The model-constrained adaptive reduction method has been able to create reduced

models that accurately represent the full models over a wide range of parameter

values in high-dimensional parametric spaces. Since the thermal fin problem is quite

small, the offline cost of generating the reduced model is not offset by the savings

in online cost even though using the reduced model in optimal design is an order

of magnitude faster than using the full model. The trade-off between the online and

offline cost has been seen to be much more dramatic for probabilistic analysis problems

in which the savings in the online cost are substantial and offset the offline cost.

In particular, for probabilistic analysis of a subsonic blade row with ten geometric

variability parameters, the reduced model provided a factor of 468 speed-up for a

Monte Carlo simulation of 10,000 samples.

Either the true error and the error indicator can be used as sampling selection

in the model-constrained adaptive sampling. Which method to use is a matter of

trading offline cost with reduced model accuracy. For the thermal fin problem, using

the error-indicator approach leads to less expensive offline cost, but the resulting

reduced model can be less accurate than that obtained using the true-error approach

with the same basis size. However, both steady and unsteady results have shown
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that, using the error indicator, in particular the residual, one can obtain reduced

models that are accurate over a wide range of parameter values in multi-dimensional

parametric input spaces.

Both steady and unsteady results numerically show that the subspace trust-region

interior reflective inexact Newton CG solver is efficient for the greedy optimization

problem in the sense that the number of Newton steps scales as O(d), where d is

the number of parameters. In addition, one can also theoretically show that if a

good preconditioner for the CG solver is available so that the number of Hessian-

vector products is independent of the number of the parameters, the offline cost for

each greedy cycle scales linearly with the dimension of the parameter space, d. In

addition, if the number of greedy cycles is fixed, i.e. the size of the reduced model is

given, then one can prove that the total offline cost of constructing the reduced basis

scales linearly with the number of parameters. As a result, the model-constrained

adaptive sampling approach can be used for problems that depend on a large number

of parameters.

In this thesis, various sampling methods are compared in the context of snapshot

generation for model reduction. The numerical results for the thermal fin show that

with the same number of sampling points, the resulting reduced model from logarith-

mic random sampling approach is more accurate than those obtained from LHS and

CVT sampling methods. Compared to these methods, the model-constrained sam-

pling yields a reduced model with error of several orders of magnitude smaller than

those obtained using logarithmic random sampling, uniform random sampling, LHS

and CVT sampling methods. As the size of the parametric input space increases,

the difference in accuracy of the reduced model using model-constrained sampling

method and those of other methods is larger. This reflects the fact that the model-

constrained sampling is a model-based sampling method; that is, the parameter is

sampled where the indicator of the error between the full and the reduced models is

locally largest, whereas the other statistically-based sampling methods use no knowl-

edge of the underlying model when selecting their sample points. As the dimension of

the parametric space increases, it becomes more and more difficult to adequately cover
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the space with a reasonable number of samples using the statistically-based sampling

methods. However, if the problems under consideration are weakly nonlinear in the

parameters or the parameter ranges are small, the results of the linearized CFD model

show that the model-constrained sampling approach and the other statistically-based

sampling methods yield sample points of similar quality in the context of snapshot

generation for model reduction.

7.2 Extensions and Future Work

There are a number of extensions that could be applied to the model-constrained

greedy-based adaptive sampling approach in this research. These extensions include

improvements to the adaptive sampling method, possible treatments for its limita-

tions, and possibilities for additional model applications. In the following, we present

some extensions and future work.

We have used a “black-box” approach (also called the reduced-space approach) to

solve the greedy optimization problem. That is, the states are eliminated by solving

the PDE constraints exactly (up to machine zero), and hence the PDE constraints

are not visible to the optimizer. As a result, feasibility is always guaranteed and

the black-box approach only moves towards optimality. The all-at-once approach

(sometimes called the full-space approach) is more efficient in the sense that it moves

towards optimality and feasibility at the same time; hence it does not require the

possibly very expensive solution of the PDE constraints, especially for problems that

are nonlinear in the state vector.

It should be emphasized again that while we have mainly presented both the-

oretical and numerical results for problems that are linear in the state vector, the

model-constrained sampling approach is applicable for problems that are nonlinear in

the state vector as well. Therefore, if a numerical solver is available for the nonlinear

problem under consideration—in particular, given a parameter set as the input, the

output of the solver is the state solution corresponding to that input set—it is straight-

forward to apply the adaptive sampling approach using the framework proposed in
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this thesis. However, the main assumption in Corollary 3.2 is that the problem under

consideration is linear in the state vector so that the a priori result of the form stated

in Theorem 2.2 holds. Note that if a priori result of this form is also available for

a problem that is nonlinear in the state vector, Corollary 3.2 still holds. This is,

however, not a severe limitation if, for example, one uses the empirical interpolation

method [61, 62, 68] and its recent extensions [69, 114, 115] to pre-process the nonlin-

ear terms by a linear combination of empirical interpolation basis functions. In that

case, the results in Corollary 3.2 still apply for the pre-processed model. It should

be pointed out that while the model-constrained sampling approach addresses the

question on how to construct a reduced basis that is valid over wide ranges of param-

eter values in multi-dimensional parametric input space, the empirical interpolation

approach addresses the question on how to construct an efficient reduced model given

a reduced basis. Therefore, the combination of the model-constrained approach and

the empirical interpolation method is a promising model reduction method that yields

accurate and efficient reduced models for a general nonlinear problem that depends on

a large number of parameters. An example in which this combination could be used

is the probabilistic analysis. For probabilistic analysis applications in this research,

we have limited ourselves to a linearized model in both states and parameters so that

efficient reduced models are available for the online stage. Therefore the model is

only valid for a small perturbation in states and parameters about the linearization

point. An improved model is therefore to combine the adaptive sampling method and

the empirical interpolation method so that the reduced model is applicable for wider

ranges of geometric variations.
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proximation via the Lanczos Process. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 14:639–649, 1995.

[8] K. Gallivan, E. Grimme, and P. Van Dooren. Padé Approximation of Large-
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