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We address the problem of propagating input uncertainties through a computational fluid dynamics model.

Methods such as Monte Carlo simulation can require many thousands (or more) of computational fluid dynamics

solves, rendering them prohibitively expensive for practical applications. This expense can be overcome with

reduced-order models that preserve the essential flow dynamics. The specific contributions of this paper are as

follows: first, to derive a linearized computational fluid dynamics model that permits the effects of geometry

variations to be represented with an explicit affine function; second, to propose an adaptive sampling method to

derive a reduced basis that is effective over the joint probability density of the geometry input parameters. The

method is applied to derive efficient reduced models for probabilistic analysis of a two-dimensional problem

governed by the linearized Euler equations. Reduced-order models that achieve 3-orders-of-magnitude reduction in

the number of states are shown to accurately reproduce computational fluid dynamics Monte Carlo simulation

results at a fraction of the computational cost.

Nomenclature

A = Jacobian matrix
Ar = Reduced Jacobian matrix
A0 = Jacobian matrix corresponding to the average geometry
B = input matrix
Br = reduced input matrix
B0 = input matrix corresponding to the average geometry
C = output matrix
Cr = reduced output matrix
C0 = output matrix corresponding to the average geometry
E = mass matrix
Er = reduced mass matrix
E0 = mass matrix corresponding to the average geometry
G = cost functional
g = geometry vector
�g = average geometric variation
gn = nominal geometry
l = number of outputs
m = number of inputs
n = number of states
nr = number of reduced states
ns = number of geometric mode shapes
tf = final time
u = input vector
vi = geometric mode shape
x = linearized state vector

xr = reduced state vector
xss = steady-state solution
x0 = linearized state corresponding to the average geometry
x0 = initial condition
y = output vector
ya = approximate output vector
ye = exact output vector
yo = nominal output vector
yr = reduced output vector
zi = random numbers representing geometry variability
zmax = upper bound of z
zmin = lower bound of z
z� = optimal sample point
�t = time step
" = level of accuracy
�i = ith singular value of the geometry snapshot matrix
� = right reduced-basis matrix
� = left reduced-basis matrix
; = the empty set

I. Introduction

T HE goal of model reduction is to systematically generate cost-
efficient representations of large-scale systems that result, for

example, from discretization of partial differential equations (PDEs).
We present an approach for deriving reduced models for
probabilistic analysis in large-scale unsteady aerodynamic
applications. The key challenges that must be addressed in this
setting are 1) the formulation of a computationally efficient
representation of the parametric dependence that describes the
uncertainty and 2) the derivation of reduced-order models that
capture variation over a parametric input space.

Computational fluid dynamics (CFD) formulations lead to large-
scale systems of equations that are computationally expensive to
solve. In many unsteady aerodynamic applications, a small number
of inputs and outputs of interest can be identified, and
computationally efficient reduced-order models can be obtained
that preserve the desired input–output mapping. For example, the
proper orthogonal decomposition (POD) method of snapshots [1]
has been used widely throughout CFD applications such as
aeroelasticity [2–4] and flow control [5,6].
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Quantifying the impact of variations in input parameters on system
outputs of interest is critical to a number of applications, such as
shape design, probabilistic analyses, and structural analysis. For
example, mistuning, or blade-to-blade variation, is an important
consideration for aeroelastic analysis of bladed disks, because even
small variations among blades can have a large impact on the forced
response and, consequently, on the high-cycle fatigue properties of
the engine. In such applications (in which the physical system must
be simulated repeatedly for different inputs), the availability of
reduced models can greatly facilitate the design and/or analysis task.
However, to be useful in such a setting, the reduced model must
provide an accurate representation of the high-fidelity CFD model
over a wide range of parameters.

Most reduction techniques for large-scale systems employ a
projection framework that uses a reduced-space basis. Methods to
compute the basis in the large-scale setting include approximate
balanced truncation [7–10], Krylov-subspace methods [11–13],
POD [1,14,15], and reduced-basismethods [16,17]. In the latter three
cases, the quality of the reduced-order model is critically dependent
on the information, generated from sampled solutions of the large-
scale system, that is used to create the reduced basis. In general,
selecting an appropriate set of samples to generate this information
has been achieved in an ad hoc manner. Empirical knowledge of the
problem at hand has been used to sample a parameter space to
generate a POD or Krylov basis for cases in which the number of
input parameters is small (for example, optimal control problems
[5,6,18,19] and parameterized design of interconnect circuits [20])
and for the case of multiple parameters describing inhomogeneous
boundary conditions for time-dependent PDEs [21]. Extended
reduced-order-modeling and spanning reduced-order-modeling
methods have been developed to derive a basis that spans a
parametric space and have been applied to uncertainty analysis of a
structural problem [22].

For reduction of large-scale linear time-invariant systems using
multipoint rational Krylov approximations, [23] proposes a
systematic method for selecting interpolation points based on an
optimality criterion. To address the more general challenge of
sampling a high-dimensional parameter space to build a reduced
basis, the greedy algorithm was introduced in [24–27]. The key
premise of the greedy algorithm is to adaptively choose samples by
finding the location of the maximum reduced-model error over a
predetermined discrete set of parameters. The greedy algorithm was
applied to find reduced models for the parameterized steady
incompressible Navier–Stokes equations [25]. It was also combined
with a posteriori error estimators for parameterized parabolic PDEs
and was applied to several optimal control and inverse problems
[26,27].

Here, we formulate the task of determining appropriate sample
locations as a greedy optimization problem, which is solved using
an efficient adaptive algorithm. The optimization formulation treats
the parameter space as continuous; that is, we do not require the a
priori selection of a discrete parameter set. Further, our selection
criterion uses an indicator of the error between full-order and
reduced-order outputs; thus, our approach is applicable in cases for
which error estimators are unavailable. Unlike other sampling
methods, the optimization-based approach scales well to systems
with a large number of parameters. To further address the challenge
of achieving a computationally efficient representation of the
dependence of the CFD model on geometric parameters, we
propose a linearization strategy that yields an affine parametric
dependence.

This article is organized as follows. Section II describes a
parametrically affine model for capturing the effects of geometry
variations on linearized unsteady aerodynamic response.
Section III presents an overview of projection-based model
reduction and then describes the proposed optimization-based
approach used to determine the reduced basis. Section IV
demonstrates the methodology through an example that considers
the effects of variations in blade geometry on the forced response
of a subsonic compressor blade row. Finally, Sec. V presents
conclusions.

II. Linearized CFD Model with Geometric Variability

In this section, we briefly present the linearized CFDmodel that is
used in this work. In many applications of interest, the unsteady flow
solution can be assumed to be a small perturbation from steady-state
conditions. This allows the unsteady governing equations to be
linearized around the steady-state flow, which reduces the
computational cost of solution considerably. Here, a discontinuous
Galerkin finite element method is used (see [28,29] for more details
on the nonlinear steady-state model). Further, an approximation that
employs an affine decomposition of the parametric dependence is
used to incorporate geometric variability in a computationally
efficient way.

The linearized equations can be written in standard state-space
form:

E _x�Ax� Bu (1)

y �Cx (2)

where x 2 Rn is the state vector containing the n perturbations in
flow unknowns from the steady-state solution xss The matrices
A 2 Rn�n, B 2 Rn�m, C 2 Rl�n, and E 2 Rn�n in Eqs. (1) and (2)
have constant coefficients evaluated at steady-state conditions xss

and arise from the linearization of the nonlinear governing equations.
The vector u�t� 2 Rm contains m external forcing inputs that are
applied through boundary conditions such as the prescribed motion
of the domain boundary or incoming flow disturbances. The vector
y�t� 2 Rl contains l outputs of interest such as lift or moment
coefficients.

We next consider incorporating the effects of geometry variability
into the linearized unsteady CFD model. Following [30], a general
geometry g can be expressed as

g� gn � �g�
Xns
i�1

�izivi (3)

where gn is the nominal geometry, �g is the average geometric
variation, vi are geometric mode shapes, and ns is the number of
mode shapes used to represent the variation in geometry. The
geometric mode shapes could be computed, for example, by
performing principal component analysis (PCA) on a manufacturing
sample of system geometries. In that case, the parameters zi in Eq. (3)
are random numbers distributed normally with zero mean and unit
variance, zi 2 N�0; 1�, and �i is the ith singular value of the
measurement snapshot matrix, which represents the geometric
variability attributable to the ith mode; thus, the product �izi is the
amount by which the mode vi contributes to the geometry g. A
detailed description of the methodology underlying this geometric
model can be found in [30].

Using model (3), a general geometry g�z� is specified by the
parameter vector z� �z1; z2; . . . ; zns �T , which describes the
geometry variability in terms of the geometry modes. The linearized
CFD system corresponding to geometry g�z� is given by

E�xss�g�z��; g�z�� _x
�A�xss�g�z��; g�z��x�B�xss�g�z��; g�z��u (4)

y �C�xss�g�z��; g�z��x (5)

where the CFD systemmatricesE,A,B, andC are, in general, both a
nonlinear function of the geometry g�z� and of the steady-state
solution xss�g�z��, which is itself also a function of the geometry. To
solve theCFD system (4) and (5) for each geometryg, wemust do the
following:

1) Compute the steady-state solution xss�g�z��.
2) Evaluate the linearized matrices E, A, B, and C.
3) Solve the resulting large-scale linear system.
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This is a computationally prohibitive proposition for applications
such as probabilistic analysis, in which thousands of geometry
perturbations may be analyzed over many random samples of z.

The expansion given by Eq. (3), which represents a general
geometry as a perturbation about the average geometry,
g0 � gn � �g, is used to derive an approximate model for
representing the effects of geometry variations. For convenience of
notation, we write the dependence of the CFD matrices on the
parameter z as E�xss�g�z��; g�z�� � E�z�, A�xss�g�z��; g�z���
A�z�, B�xss�g�z��; g�z�� � B�z�, and C�xss�g�z��; g�z�� �C�z�.
Instead of computing the linearized CFD matrices exactly for any z,
we choose to linearize the relationshipsE�z�,A�z�,B�z�, andC�z�.
The linearized unsteady CFD model for the average geometry g0 �
gn � �g is defined by the matrices E0, A0, B0, and C0, with
corresponding solution x0. That is, for z� 0, we have

E 0 _x0 �A0x0 � B0u (6)

y 0 �C0x0 (7)

Using a Taylor series expansion about z� 0 for the matrix A�z�
gives

A �z� �A0 �
dA

dz1

����
z�0
z1 � 	 	 	 �

dA

dzns

����
z�0
zns � 	 	 	 (8)

where the matrix derivatives denote componentwise derivatives,
which can be evaluated through application of the chain rule or
numerically by finite differences. These derivatives are evaluated at
average geometry conditions z� 0, but reflect the dependence on z
in two ways: explicitly as well as implicitly through the dependence
of xss on z. The matrices E�z�, B�z�, and C�z� can be expanded
using formulas analogous to Eq. (8).

If the geometric variability (given by the product �izi) is
sufficiently small, the constant and linear terms in the Taylor
expansion (8) are sufficient to approximate the linearized matrices
A�z� accurately: that is,

A �z� 
A0 �
dA

dz1

����
z�0
z1 � 	 	 	 �

dA

dzns

����
z�0
zns (9)

For i� 1; 2; . . . ; ns, we define

E 0i�
dE

dzi

����
z�0
; A0i�

dA

dzi

����
z�0
; B0i�

dB

dzi

����
z�0
; C0i�

dC

dzi

����
z�0
(10)

where the matricesE0i,A
0
i,B

0
i, andC

0
i can be computed, for example,

using a finite difference approximation of the respective derivatives.
The approximate CFD model for any z is then given by

�
E0 �

Xns
i�1

E0izi

�
|������������{z������������}

E�z�

_x�
�
A0 �

Xns
i�1

A0izi

�
|������������{z������������}

A�z�

x�
�
B0 �

Xns
i�1

B0izi

�
|������������{z������������}

B�z�

u

(11)

y �
�
C0 �

Xns
i�1

C0izi

�
|������������{z������������}

C�z�

x (12)

For simplicity, we approximate the matrix derivatives in Eqs. (11)
and (12) using central differences. In this case, a total of

2
Xns
i�1
�1

large-scale steady-state CFD solves are required to determine the
matricesA0,B0,C0,E0,A

0
i,B

0
i,C

0
i, andE

0
i. This is a one-time offline

cost; once thematrices are computed, the system (11) and (12) can be
readily evaluated for an arbitrary geometry g�z�without running the
CFD steady solver.

It should be noted that the model (11) and (12) is valid for only
small variations from the average geometry and small unsteady
perturbations from steady-state conditions. Larger geometric
variations will incur larger errors in the solution of Eqs. (11) and
(12), due to the neglect of the higher-order terms in the Taylor series
expansion. Further, the forcing inputs u�t� must remain small in
order for the state-linearization of the nonlinear CFD model to be
valid. The specific range of acceptable input magnitudes will vary
from problem to problem; however, linearized analysis has been
shown to be appropriate in many application contexts, including
aeroelasticity [3]. For example, Lisandrin et al. [31] show that for
transonic flow over isolated airfoils analyzed with a nonlinear Euler
model, unsteady pitching disturbances up to 500% in magnitude of
the steady value can be considered linear with respect to
perturbations of the displacements around the steady condition, as
long as flow separations or shock/boundary-layer interactions do not
occur. Even with the restriction of small geometric variations and
small deviations from steady-state conditions, ourmodel is useful for
many practical applications.

Although these simplifications reduce the computational cost, the
model (11) and (12) is still of high dimension and thus is
computationally too expensive for applications such as probabilistic
analysis, in which one needs to determine the unsteady aerodynamic
response for many random geometries. In the next section, we
propose a model-reduction method that enables us to further reduce
the cost of solving the approximate CFD system. The key challenge
that must be addressed is developing a reduced-order model that is
accurate in both state space and geometric parameter space,
described here by the vector z.

III. Model-Reduction Methodology

A. General Projection Framework

Most large-scale model-reduction frameworks are based on a
projection approach, which is described in general terms in this
section. Consider the general parameterized dynamic system

E �z� _x�A�z�x�B�z�u (13)

y �C�z�x (14)

with initial condition

x �0� � x0 (15)

where x�z; t� 2 Rn is the state vector, u�t� 2 Rm contains the m
forcing inputs to the system, y�z;x; t� 2 Rl contains the l outputs of
interest, and x0 is the specified initial state. The matrices E 2 Rn�n,
A 2 Rn�n, B 2 Rn�m, and C 2 Rl�n in Eqs. (13) and (14) may
depend (possibly nonlinearly) on a set of ns parameters contained in
the vector z 2 Rns . General dynamic systems of the form inEqs. (13–
15) often arise from discretization of PDEs. In that case, the
dimension of the system, n, is large, and the parameters zi could
describe, for example, changes in the domain shape or PDE
coefficients. The CFD model (11) and (12) derived in the previous
section is one example of a system of the form in Eqs. (13) and (14);
in that case, the parameters zi describe geometric shape variations.

A reduced-order model of Eqs. (13–15) can be derived by
assuming that the state x�z; t� is represented as a linear combination
of nr basis vectors:

~x��xr (16)

where ~x�z; t� is the reduced-model approximation of the state x�z; t�
and nr � n. The projection matrix � 2 Rn�nr contains as columns
the basis vectors �i (i.e., �� ��1�2 	 	 	 �nr �), and the vector
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xr�z; t� 2 Rnr contains the corresponding modal amplitudes. Using
the representation (16) together with a Petrov–Galerkin projection of
the system (13–15) onto the space spanned by the left basis � 2
Rn�nr yields the reduced-order model with state xr�z; t� and output
yr�z;x; t�:

E r�z� _xr �Ar�z�xr � Br�z�u (17)

y r �Cr�z�xr (18)

x 0
r ��Tx�0� (19)

where Er�z� ��TE�z��, Ar�z� ��TA�z��, Br�z� ��TB�z�,
and Cr�z� �C�z��.

Projection-based model-reduction techniques seek to find the
bases � and � such that the reduced system (17–19) provides an
accurate representation of the large-scale system (13–15) over the
desired range of inputs u�t� and parameters z. A common choice for
the left basis is the Galerkin projection���. In this work, we use a
least-squares weighted-residual choice of the left basis, which
amounts to �� �E ��tA��, where �t is the time step used to
discretize Eqs. (13) and (14). Inmany cases, a least-squares approach
can be used to guarantee stability of the reduced model.

B. Reduced Basis for Parametric Input Dependence

Using the general projection framework, ourmodel-reduction task
becomes one of determining an appropriate reduced basis that spans
both the parametric input space z and the space of unsteady inputs
u�t�. In the case of a linear time- and parameter-invariant system
[that is, a system of the form in Eqs. (13–15), with no dependence on
parameters z], a number of model-reduction techniques can be used,
such as Krylov-basedmethods and POD. To extend these techniques
to the general case in which the system matrices depend on the
parameters z, we require a systematic method of sampling the
parametric input space.

In the case of the POD, the reduced basis is formed as the span of a
set of state solutions, commonly referred to as snapshots. These
snapshots are computed by solving the system (13–15) for selected
values of the parameters z and selected forcing inputs u�t�. The
quality of the resulting reduced-order model depends strongly on the
choice of parameters and inputs over which snapshots are computed.
Two issues arise in selecting an appropriate sample set. First,
choosing where and how many samples to generate has been, in
general, an ad hoc process. One can use knowledge of the application
at hand to determine representative inputs; however, the resulting
reduced-order model would not be of guaranteed quality. Second, in
the case that the parametric input space is of high dimension, ad hoc
generation of snapshots can require a prohibitive number of high-
fidelity system solves. Using standard sampling methods, a problem
with just a few parameters can require a large number of samples to
adequately cover the space, due to the combinatorial explosion of the
number of possible parameter combinations.

To address these issues, we use the greedy algorithm [24–27] to
adaptively select snapshots, by finding the location in parameter
space in which the error between the full-order and reduced-order
models is maximal, updating the basis with information gathered
from this sample location, forming a new reduced model, and
repeating the process. In [32], a method is presented that formulates
the greedy approach as an optimization problem that minimizes the
error in reduced-model output prediction, which is defined by
introducing (as constraints) the systems of equations representing the
full and reducedmodels. In thatwork, the theoretical properties of the
approach are described for steady problems. Here, we extend that
approach to address unsteady problems, as described in the
remainder of this section.

Within each cycle of the greedy algorithm, the key step is to
determine the location in parameter space in which the error in the
reduced model is maximal. We define the cost functional

G�z;x;xr� �
1

2

Z
tf

0

k y�z;x; t� � yr�z;xr; t�k22 dt

� 1

2

Z
tf

0

k Cx � Crxrk22 dt (20)

which describes the error between the full and reduced models over
the parameter space z, integrated over some time horizon of interest
tf . Given a current basis�, we find the location in parameter space of
maximum error by solving the optimization problem

max
x;xr;z

G� 1

2

Z
tf

0

k Cx � Crxrk22 dt (21)

subject to

E �z� _x�A�z�x�B�z�u (22)

x 0 � x�0� (23)

E r�z� _xr �Ar�z�xr � Br�z�u (24)

x 0
r ��Tx�0� (25)

z min  z  zmax (26)

where zmin and zmax are, respectively, lower and upper bounds on the
parameter vector z. We denote the parameter vector that solves the
maximization problem (21–26) by z�. Next, we compute the solution
x�z�; t� of the full system at the worst-case parameter value z�. This
solution information is added to the basis �, for example, using the
POD. (Note that once the sample location has been found, other
model-reductionmethods could also be employed.) The procedure is
then repeated by solving the optimization problem (21–26) with the
updated basis �. Thus, we are using a systematic adaptive error
metric based on the ability of the reduced-order model to capture the
outputs of interest in order to choose the sample locations. This
model-reduction approach is summarized in the following model-
constrained adaptive sampling procedure.

Algorithm 1:
1) Given a reduced basis �, solve the optimization problem (21–

26) to find the location in parameter space at which the error is
maximized [i.e., find z� � argmaxG�z�].

2) If G�z��< ", where " is the desired level of accuracy, then
terminate the algorithm. If not, go to the next step.

3) With z� z�, solve the full system (13–15) to compute the state
solutions x�z�; t�, t� �0; tf�. Use the span of these state solutions to
update the basis �. Go to step 1.

In step 3 of Algorithm 1, the basis can be updated using many of
the existing model-reduction methods. For example, the POD could
be used to compute the span of the updated snapshot set, which
would comprise the existing basis vectors and the new state solutions
x�z�; t�. As an alternative approach, one could also solve an (inner)
optimization problem tofind the basis thatminimizes the output error
at the sample points [33]. Algorithm 1 is initialized by choosing the
initial basis as the empty set, �� ;; thus, the reduced model is
initially a zero-order approximation of the full model.

The optimization problem (21–26) that must be solved in each
adaptive cycle (i.e., step 1 of Algorithm 1) is large-scale; in
particular, note that the large-scale system equations appear as
constraints in Eq. (22). The determination of each sample point z� via
solution of this optimization problem therefore requires some
number of solves of the system (22), which, for the large-scale
problems of interest here (n > 105), is the dominant computational
cost. It is therefore critical to use an efficient optimization method:
that is, one that exploits the structure of the problem to offer rapid
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convergence to the optimum with the fewest number of full-model
solves. We employ recent advances in scalable algorithms for large-
scale optimization of systems governed by PDEs, which have
permitted solution of problems with millions of state and
optimization variables, often at a cost of a handful of PDE solves
[34]. Our solution method is described in detail in [32]; in the
following, we summarize the approach.

To solve the constrained optimization problem (21–26), we
choose to solve an equivalent bound-constrained optimization
problem in the z variables by eliminating the state variables x and xr.
That is, we replace minx;xr;zG�x;xr; z� with minzG�x�z�;xr�z�; z�,
where the dependence ofx andxr on z is implicit through the full and
reduced state equations (22–25). To handle the bound constraints, we
use theColeman–Li subspace trust-region interior-reflectiveNewton
framework to solve the resulting bound-constrained optimization
problem efficiently [35].We use the conjugate gradient (CG)method
to determine the subspace over which the linear system of equations
arising at each Newton step is solved, and we globalize via a trust-
region scheme (see, for example, [36]). This method combines the
rapid locally quadratic convergence-rate properties of Newton’s
method, the effectiveness of trust-region globalization for treating
ill-conditioned problems, and the Eisenstat–Walker idea of
preventing oversolving [37].

The gradient of G with respect to z, as required by Newton’s
method, can be computed efficiently via an adjoint formulation,
which, in this context, entails a pair of full and reduced state-system
solves followed by a pair of full and reduced adjoint-system solves.
CG requires only Hessian vector products and not the Hessian by
itself; because it is a directional derivative of the gradient, its
computation similarly involves solution of (linearized) state and
adjoint equations. In summary, the work at each CG iteration of the
optimization algorithm is dominated by the solution of a pair of state
and adjoint systems.

As an alternative to using the true error function in Eq. (21), one
can use an error indicator based on the residual of the full model
evaluated at ~x, the reduced-model approximation of the state. In this
case, the optimization problem becomes

max
xr;z

G� 1

2

Z
tf

0

k E� _xr �A�xr � Buk22dt (27)

subject to

E r�z� _xr �Ar�z�xr � Br�z�u (28)

x 0
r ��Tx�0� (29)

z min  z  zmax (30)

The advantage of this formulation is that the full-model equations
no longer appear as constraints. Therefore, solution of the full model
is avoided during the optimization solution (that is, in step 1 of
Algorithm 1) and required only to generate the snapshots at the
sample point in step 3.When high offline costs can be tolerated, using
the true error is expected to lead to the identification of better sample
points; however, when offline costs are a concern, the error indicator
provides an attractive lower-cost option.

Regardless of the form of the objective function, the states depend
nonlinearly on the parameter z. Therefore, the optimization
problems (21–26), which involve both full and reduced states, and
Eqs. (27–30), which involve the reduced state, are generally
nonconvex. In particular, as the model-constrained adaptive
sampling procedure adds sample points, we expect the cost
functional to become increasingly multimodal, because the error
function will be close to zero (below the tolerance ") at each of the
previous parameter sample locations. Note that although finding the
global maximum is preferred, convergence to a local maximum is
still very useful; solving the greedy optimization problem is a

heuristic to systematically find good sample points, and at a local
maximum, the error is (locally) large. To avoid convergence to a
local maximum close to a previous sample location, and thus to
explore the parameter space more widely, a random initialization of
the optimization variables z is used for each cycle of Algorithm 1.An
initial guess is accepted only if it is sufficiently far from previous
sample locations, measured using a tolerance that is set relative to the
parameter ranges. The stopping criterion applied in step 2 of
Algorithm 1 monitors G�z��, the reduced-model error associated
with the optimal solution z�. It is important to note that if G�z�� falls
below the desired error level, this guarantees only that the local error
between the full and reduced model is sufficiently small. Because of
the nonconvexity of the optimization problem, it is possible that
larger errors may exist elsewhere in the parameter space. This also
implies that the maximum error or residual G�z�� could increase in
the next adaptive cycle.

C. Reduced-Order Linearized Aerodynamic Model with Geometric

Variability

Combining the linearized unsteady model with geometric
variability from Sec. II with the reduced-basis model-reduction
methodology based on model-constrained adaptive sampling, we
now have a method to create efficient reduced-order models that
capture the effects of small geometric variations.

Using the projection framework and a basis � computed using
Algorithm 1, the reduced-order model of Eqs. (11) and (12) is�

Er0
�
Xns
i�1

E0ri zi

�
|�������������{z�������������}

Er�z�

_xr�
�
Ar0
�
Xns
i�1

A0ri zi

�
|�������������{z�������������}

Ar�z�

xr�
�
Br0
�
Xns
i�1

B0ri zi

�
|�������������{z�������������}

Br�z�

u

(31)

y r �
�
Cr0
�
Xns
i�1

C0ri zi

�
|�������������{z�������������}

Cr�z�

xr (32)

where the reduced-order matrices are given by

E r0 ��TE0�; Ar0 ��TA0�; Br0 ��TB0; Cr0 �C0�

(33)

E 0ri ��TE0i�; A0ri ��TA0i�; B0ri ��TB0i

C0ri �C0i�; i� 1; 2; . . . ; ns
(34)

The key enabling feature of the adaptive sampling approach is that it
allows the basis� to be computed in an efficient systematic manner,
even when the dimension of the parameter space is large. The
methodology also gives us a means to monitor the (local) error
between reduced-order and full-order outputs. The key advantage of
the geometric variability model is that it leads to an affine parameter
dependence; thus, the reduced-order matrices in Eqs. (33) and (34)
can be evaluated offline, and the online cost of solving the reduced-
order model (31) and (32), does not depend on the large-scale state
dimension n.

IV. Probabilistic Analysis Application

The model-reduction methodology is applied to probabilistic
analysis of a subsonic rotor blade that moves in unsteady rigid
motion. The analysis seeks to quantify the effects on the blade forced
response of small variations in blade geometry. Mistuning, or blade-
to-blade variation, is an important consideration for aeroelastic
analysis of bladed disks, because even small variations among blades
can have a large impact on the forced response and, consequently, on
the high-cycle fatigue properties of the engine. The effects of blade
structural mistuning (variations in mass and stiffness properties)
have been studied extensively (see, for example, [38–41]); however,
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due to the prohibitively high computational cost of performing
probabilistic analysis with a CFD model, the aerodynamic effects
due to variations in geometry are less understood.

Geometric mistuning effects have been incorporated into
structural responses of bladed disks using a mode-acceleration
method to convert the effect of geometric mistuning to that of
external forces of the tuned disks [42]. Truncated sets of tuned
system modes compensated by static modes (generated by external
forces that were constructed from mistuning) were then used to
obtain efficient and accurate structural reduced models. Several
studies have also found that a small number of PCAgeometricmodes
can capture manufactured variability in bladed disks accurately
[30,43,44]. Such reduced geometric variability models have been
used to investigate the impact of geometric variability on axial
compressor steady aerodynamic performance using Monte Carlo
simulation (MCS) based on a large-scale nonlinear CFDmodel [30].
Using MCS of a CFD model to quantify the impact of geometric
variability on unsteady performance is a computationally prohibitive
proposition. For example, if the unsteady analysis for one geometry
takes 1 min to compute (a conservative estimate), the O�50; 000�
such analyses that would be required for a MCS would take roughly
one month of CPU time. Therefore, we desire to obtain a reduced-
order model that captures both unsteady response and variation over
blade geometries. Our method combines the reduced geometric
variability model and the model-constrained adaptive sampling
methodology of Algorithm 1 to obtain a reduced-order model that is
valid over a range of forcing frequencies, aerodynamic damping, and
small perturbations in blade geometries and thus enables fast and
accurate probabilistic analysis.

A. Blade Forced-Response Example

For the example presented here, theflow ismodeled using the two-
dimensional Euler equations written at the blade midsection. The
average geometry of the blade is shown in Fig. 1, along with the
unstructured grid for a single blade passage, which contains 4292
triangular elements. The Euler equations are discretized in spacewith
the discontinuous Galerkin method described in Sec. II. For the case
considered here, the incoming steady-state flow has a Mach number
of M� 0:113 and a flow angle of �� 59 deg. Flow tangency
boundary conditions are applied on the blade surfaces. To compute
the steady-state flow for the nominal case, we exploit the fact that the
rotor is cyclically symmetric; thus, the steady flow in each blade
passage is the same and the steady-state solution can be computed on
a computational domain that describes just a single blade passage.
Periodic boundary conditions are applied on the upper and lower
boundaries of the grid to represent the effects of neighboring blade
passages.

A linearized model is derived for unsteady flow computations by
assuming that the unsteady flow is a small deviation from steady

state. An affine dependence of the linearized system matrices on the
blade geometries is derived using the method described in Sec. II.
This leads to a system of the form in Eqs. (11) and (12), in which the
state vector x�t� contains the unknown perturbation flow quantities
(density, Cartesian momentum components, and energy). For the
discontinuous Galerkin formulation, the states are the coefficients
corresponding to each nodal finite element shape function. Using
linear elements, there are 12 degrees of freedomper element, giving a
total state-space size of n� 51; 504 states per blade passage. For the
problem considered here, the forcing input u�t� describes the
unsteady motion of each blade, which, in this case, is assumed to be
rigid plungingmotion (vertical motionwith no rotation). The outputs
of interest y�t� are the unsteady lift forces generated on each blade.
The initial perturbation flow is given by x0 � 0.

B. Geometric Variability Model

Geometric modes were computed using a PCA of data modified
from 145 actual blades, measured at 13 sections along the radial
direction. The midsection geometries were then extracted. Thus, the
parameter vector z contains the normally distributed random
variables that describe perturbations in the geometry of each blade
according to the model (3). The first five zi coefficients were
computed for each of the 145 blade geometries. The Kolmogorov–
Smirnov test indicates that we cannot reject the null hypothesis that
these coefficients were drawn from a standard normal distribution. In
Fig. 2, we consider a geometric model that uses the two dominant
variability modes (i.e., the modes corresponding to the two largest
singular values), ns � 2. The figure shows the lift coefficientCL and
moment coefficient CM of a blade in response to a pulse input in
plunge for a particular geometry that corresponds to z1 � 1:59 and
z2 � 1:59. The response is computed using the exact linearized CFD
model [i.e., the system (4) and (5) and the approximate CFD
model (11) and (12)withns � 2 geometrymodes]. For reference, the
response of the nominal blade is also shown in the figure. It can be
seen that despite the small perturbation in geometry, the change in
lift- and moment-coefficient responses is significant. The
approximate CFD model captures the unsteady response accurately.

Table 1 shows the error in lift and moment outputs due to the
linearized geometry approximation for several different blade
geometries with a pulse input in plunge. The error e is defined as the
2-norm of the difference between the approximate, and the exact
linearized CFD output is defined as a percentage of the change
between the exact and the nominal output:

e�

������������������������������������R tf
0 k ye � yak22dt

q
������������������������������������R tf
0 k ye � yok22dt

q � 100% (35)

where ye, ya, and yo are, respectively, the exact, approximate, and
nominal outputs. In Table 1, eCM denotes the error in moment-
coefficient response, and eCL denotes the error in lift-coefficient
response. These computations were carried out over the time horizon
shown in Fig. 2 (i.e., with tf � 107). In general, we expect the quality
of the approximate model to be compromised as the size of the
geometric perturbation increases. The errors shown in Table 1 for
blade geometries in the tails of the distribution (i.e., those with large
geometry variation) are deemed to be acceptable for the probabilistic
application of interest here. For applications in which greater
accuracy for large geometry variations is important (for example,
determining the probability of failure would require the tail of the
distribution to be resolved accurately), the results suggest that the
approximate CFD system is not appropriate. In such cases, onemight
consider includingmore terms in Eq. (9), the Taylor series expansion
of the CFD matrices.

C. Model Reduction

To create a reduced-order model for use in probabilistic analysis,
the model-constrained adaptive sampling methodology of
Algorithm 1 is applied to this problem. Results are shown here for
the case of two blades moving with an interblade phase angle ofFig. 1 Geometry and CFD mesh for a single blade passage.
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180 deg. Each blade geometry is represented by five variability
modes, giving ns � 10 geometric parameters in this example. The
geometric variability parameters z, by construction, are random
numbers normally distributed with zero mean and unity variance,
99.7% of which are distributed in the interval ��3:0; 3:0�. The bound
constraints for all parameters in the greedy optimization problem are
therefore chosen to be

� 3:0  zi  3:0; i� 1; . . . ; ns (36)

The model-constrained adaptive sampling methodology is
employed using the residual error indicator given in Eq. (27). With
a stopping tolerance of "� 10�4 and with the lift coefficients as the
outputs of interest, this leads to a reduced-order model of size
nr � 290 (for two blades). Algorithm 1 required 29 adaptive cycles.
Because the greedy optimization formulation (27–30) in this case
does not involve the full model as constraints, the computational cost
to compute our reduced model was thus of the order of 29 full-scale
matrix factorizations (for which the computational cost dominates
the other calculations). In terms of CPU time, this corresponds to
10.92 h on a dual-core 64-bit personal computer with a 3.2-GHz
Pentium processor. Figure 3 shows the norm of the maximum
residual versus the number of adaptive cycles. The overall trend is a
decrease in residual norm, although the decrease is not monotonic.
This is because our local optimization solver is only guaranteed to
converge to a local maximum, the location of which depends on the
initial guess supplied in each adaptive cycle. As a result, the current
localmaximizermay lead to a residual that has a larger norm than that
of a maximizer on an earlier cycle. Although finding the global
maximum is obviously preferable, a local maximum still provides us
with a good sample point (the error is locally large for this geometry),
and as the figure shows, after 20 adaptive cycles, the norm of the
residual for all sampled points is small.

We now have a reduced model of size nr � 290 that accurately
captures the unsteady response of the original two-blade systemwith
n� 103; 008 states over the range of geometries described by the 10
geometric parameters. As an example of an application forwhich this
reduced model is useful, we consider probabilistic analysis of the
system. Specifically, we consider the impact of blade geometry
variabilities on the work per cycle, which is defined as the integral of
the blademotion times the lift force over one unsteady cycle. AMCS
was performed in which 10,000 blade geometries were selected
randomly from the given distributions for each blade. The same
10,000 geometries were analyzed using the approximate CFDmodel
and the reduced model. Figure 4 shows the resulting probability
density functions (PDFs) of work per cycle for the first blade,
computed using the approximate CFD model and the reduced-order
model. Figure 5 shows the PDFs of work per cycle for the second
blade. Table 2 shows that the CPU time required to compute the
reduced model MCS is a factor of 468 times smaller than that
required for the CFD MCS and more than justifies the offline cost
required to compute the reduced model. These computational results
were obtained on a dual-core 64-bit personal computer with a 3.2-
GHz Pentium processor, using a direct sparse solver for the full
model [45] and an LU decomposition for the reduced model.

Table 2 also compares the statistics of the two distributions. It can
be seen from Figs. 4 and 5 and Table 2 that the reduced-order model
accurately predicts the mean, variance, and shape of the distribution
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Fig. 2 Lift coefficientCL andmoment coefficientCM in response to a pulse input in blade plunge displacement for the nominal geometry and aperturbed

geometry described by two geometric PCA modes with z1 � 1:59, z2 � 1:59. Perturbed geometry results are computed with both the exact and

approximate linearized CFD model.

Table 1 Error in approximate CFD model predictions

for a pulse input in blade displacement for several

different geometries

Variability amplitudes eCM , % eCL , %

z1 � 1:59, z2 � 1:59 5.04 2.6
z1 � 1:59, z2 ��1:59 0.3 0.1
z1 ��1:59, z2 ��1:59 2.0 0.8
z1 � 3:0, z2 � 3:0 16.6 9.2
z1 � 3:0, z2 ��3:0 4.1 2.3
z1 ��3:0, z2 ��3:0 12.4 4.7
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Fig. 3 Maximum residual norm versus the number of adaptive cycles.

2526 BUI-THANH, WILLCOX, AND GHATTAS



of work per cycle. To further verify the quality of the reduced model,
we apply the Kolmogorov–Smirnov method [46] to test whether the
reduced work-per-cycle results and the full work-per-cycle results
are drawn from the same distribution. The results show that we
cannot reject the hypothesis that the distribution is the same at a 5%
significance level.

To further compare the reduced-order and CFD results, we pick
four particular geometries corresponding to the left tail, right tail,

midleft and midright locations on the PDF of the first blade, as
indicated by the circles in Fig. 4a. In Table 3, the work per cycle is
given for these four blade geometries as computed by the exact
linearized CFD model, the approximate CFD model, and the
reduced-order model. The table shows that the approximate CFD is
again in acceptable agreement with the exact CFD for themidleft and
midright cases, which have smaller variability. The errors in the tails
of the distribution are larger. The effectiveness of the adaptive
model-reduction methodology of Algorithm 1 can be seen from the
good agreement between the approximate CFD and the reduced-
model results for all four geometries.
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Fig. 4 Comparison of CFD and reduced-order-model predictions of work per cycle (WPC) for blade 1. MCS results are shown for 10,000 blade
geometries. The same geometries were analyzed in each case. The dashed line denotes the mean.

−2.2 −2 −1.8 −1.6 −1.4 −1.2
0

50

100

150

200

250

300

350

400

WPC

Fr
eq

ue
nc

y

−2.2 −2 −1.8 −1.6 −1.4 −1.2
0

50

100

150

200

250

300

350

400

WPC

Fr
eq

ue
nc

y

a) Full WPC for blade 2 b) Reduced WPC for blade 2

Fig. 5 Comparison of CFD and reduced-order-model predictions of work per cycle (WPC) for blade 2. MCS results are shown for 10,000 blade

geometries. The same geometries were analyzed in each case. The dashed line denotes the mean.

Table 2 Approximate linearized CFD model and reduced-order-

model MCS results. Work per cycle (WPC) is predicted for blade

plunging motion at an interblade phase angle of 180 deg for 10,000

randomly selected blade geometries

Approximate linearized CFD Reduced

Model size 103,008 290
Number of nonzeros 2,846,056 84,100
Offline cost — 10.92 h
Online cost 515.61 h 1.10 h
Blade 1 WPC mean �1:8583 �1:8515
Blade 1 WPC variance 0.0503 0.0506
Blade 2 WPC mean �1:8599 �1:8583
Blade 2 WPC variance 0.0136 0.0138

Table 3 Linearized CFD, approximate linearized CFD,

and reduced-order-model work-per-cycle prediction

for the four geometries indicated in Fig. 4a

Linearized CFD Approximate linearized CFD Reduced

Left tail �1:9576 �2:3581 �2:3585
Midleft �1:9099 �1:9509 �1:9341
Midright �1:8577 �1:7448 �1:7317
Right tail �1:9206 �1:3098 �1:3025
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V. Conclusions

The key contributions of this paper are the derivation of a
linearized CFDmodel that permits the effects of geometry variations
to be represented with an explicit affine function, the development of
an adaptive sampling method to derive a reduced-order basis that
spans both unsteady forcing input and parameter space, and the
solution of a large-scale probabilistic analysis of the effects of small
variations in geometry on unsteady aerodynamic response. The
methodology was demonstrated here for a problem that is linear in
the state variables and affine in the parameter variables; however, the
model-constrained adaptive sampling approach provides a general
framework that is applicable to nonlinear problems. In the general
nonlinear case, however, one must address the challenge of carrying
out online reduced-order-model computations in an efficient manner
that does not depend on the large-scale system dimension.

A Lagrange basis has been used in this work; however, one could
further enrich the reduced subspace using a Hermite basis. Namely,
one could add the derivatives of the states with respect to parameters
as additional snapshots if they are easy and inexpensive to compute.
An alternative approach might be to add the adjoint information to
enrich the reduced basis. These approaches would likely reduce the
offline cost of the algorithm by providing additional information at
each sample point; however, a key question is whether the quality of
the reduced model would be improved for a given basis size. These
avenues provide interesting avenues for further research.
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