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Abstract

A new parallel discontinuous Galerkin solver, called ArcOn, is developed to describe the inter-
mittent turbulent transport of filamentary blobs in the scrape-off layer (SOL) of fusion plasma.
The model is comprised of an elliptic subsystem coupled to two convection-dominated reaction-
diffusion-convection equations. Upwinding is used for a class of numerical fluxes developed to ac-
commodate cross product driven convection, and the elliptic solver uses SIPG, NIPG, IIPG, Brezzi,
and Bassi-Rebay fluxes to formulate the stiffness matrix. A novel entropy sensor is developed for
this system, designed for a space-time varying artificial diffusion/viscosity regularization algorithm.
Some numerical experiments are performed to show convergence order on manufactured solutions,
regularization of blob/streamer dynamics in the SOL given unstable parameterizations, long-time
stability of modon (or dipole drift vortex) solutions arising in simulations of drift-wave turbulence,
and finally the formation of edge mode turbulence in the scrape-off layer under turbulent saturation
conditions.

Keywords: Nodal/modal, discontinuous Galerkin, unified formulation, elliptic, hyperbolic, parabolic,
plasma physics, fusion, tokamaks, verification, blobs, modons, scrape-off layer, interior penalty, turbulence,
upwinding, artificial diffusion, massively parallel.

Contents

§1 Introduction 2

§2 The governing equations 4

§3 The discretization procedure 5

3.1 The approximation procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1.1 The continuity equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1.2 The ion polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.3 The convective fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.4 The elliptic subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 The formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

XCorresponding author, †michoski@ices.utexas.edu

1

https://webspace.utexas.edu/michoski/Michoski.html


2 DG methods for plasma physics in the scrape-off layer of tokamaks

§4 Numerical tests 12

4.1 Elliptic verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 Hyperbolic-parabolic verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.3 Streamer validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

§5 Regularization processes 18

5.1 Artificial diffusion and gradient driven flow . . . . . . . . . . . . . . . . . . . . . . . . . 18

§6 Physical solutions 22

6.1 Modon solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.2 Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

§7 Conclusion 27

§8 Acknowledgements 28

§1 Introduction

In magnetic fusion devices, a large fraction of the thermal power flows to an actively cooled strike-
plate through a narrow layer called the scrape-off layer (SOL) [44]. This layer lies at the boundary
between closed field lines and field lines that connect to the wall, and its width is determined by the
competition between the turbulent transport across the magnetic field and the very rapid transport
along the field. This width determines the heat flux density on the wall and impacts wall erosion,
recycling, and density control. Transport in the SOL is known to be highly intermittent and dominated
by the ejection of coherent plasma filaments known as“blobs”or“streamers” [22, 35, 64]. The modeling
of this turbulent transport is important in order to predict and understand the dependence of the SOL
width on the plasma parameters and machine size.

The equations that govern SOL blob dynamics have been formulated and analyzed [5, 26, 35, 62],
but many questions remain open. From a mathematical point of view the dynamics of existing SOL
plasma models can be characterized as systems of equations that are driven by operators that are
nonlinear and contain multiple signatures (e.g. elliptic, parabolic, dispersive, hyperbolic operators,
etc.) displaying weak regularity features in the coupling. As the consistency, stability, and accuracy
of numeric methods are strongly constrained by the behavior of the underlying mathematical models,
the difficulties posed by these complicated SOL plasma dynamics raise interesting and challenging
technical questions.

As a potential solution to the difficulties that can arise, we explore the use of a discontinuous
Galerkin (DG) finite element method for modeling blob dynamics in the SOL. The discontinuous
Galerkin method is a high order numerical method, that has been found to provide formidable accuracy,
stability, and robustness in many areas of nonlinear dynamics [15, 16, 25, 37]. Moreover, DG methods
are unified in the sense that they are well-suited for rigorous analysis of both the physics as well as the
numerics and mathematics of the system. They demonstrate high order convergence rates [2, 4], are
well-established as candidates for computationally optimal adaptive technologies (e.g. hp-adaptivity
and r-adaptivity) [21, 52], are extremely scalable (especially on state-of-the-art architectures with
high thread parallel arithmetic intensity, such as GPUs and coprocessors) [1, 34, 73, 75], and are
often noted as being remarkably flexible for accurately modeling large categories of coupled systems of
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initial-boundary value problems with strongly nonlinear forcings. This aspect of DG methods makes
them particularly appealing for studying scrape-off layer dynamics, as the system of PDEs in question
in the scrape-off layer is often highly variable, requires great flexibility in representation, possess weak
regularity features, and may involve complicated geometries (e.g. in the presence of magnetic chaos)
with nonlinear boundary forcings that are befitting to finite element methods in general.

The application of DG methods to problems arising in plasma physics and nuclear engineering
have established a high benchmark. Dawson, Wheeler and Proft studied neutron transport in [20].
In [31, 32] Hesthaven and Jacobs addressed DG plasma building block models, along with providing
high resolution insight into the basic aspects of applying DG methods to plasma problems. Warburton
and Karniadakis developed a turbulent DNS solver for unsteady viscous MHD in [72], and Cheng, Li,
Qiu, and Xu [14] have recently studied specialized positivity preserving DG methods in the context
of ideal MHD. In plasma kinetic theory, Heath, Gamba, Morrison, Cheng, and Michler [13, 28] have
developed some impressive high dimensional Vlasov-Poisson schemes, where Rossmanith and Seal have
similarly implemented DG schemes for Vlasov-Poisson, though in the Semi-Lagrangian setting [61].
Edge turbulence models have recently worked their way into some studies of Peterson and Hammet[59],
while some of the most well-established DG results in computational plasma physics are those from the
multifluid models of Shumlak, Loverich, Hakim, Srinivasan, and Meier et al. [45, 46, 48, 67, 68], which
have not only been thoroughly validated, but thoroughly benchmarked against established codes in
the community.

The present paper represents an interdisciplinary effort to apply general discontinuous Galerkin
methods to the modeling of plasma dynamics in tokamak scrape-off layers. This work draws heavily
from a number of disciplines, in the context of trying to serve as a powerful staging ground for further
and deeper analysis of tokamak reactors. In this direction, the code architecture we have developed
for this study has been given the moniker ArcOn. The code itself is explicit in time and consists of
three coupled equations that require two local discontinuous solves, and a global linear solve in the
elliptic subsystem (to be described below). It has been written (primarily) in C++, and utilizes a
number of external libraries, including: deal.II [7], p4est [12], and PETSc [6]. The development of
ArcOn has required the modification of deal.II, which required a fundamental update/extension to
core functionality in order to provide inter-software support for periodic boundary data over massively
parallel distributed meshes. We mention this process briefly here, as it was quite time-consuming and
introduced a nontrivial technical challenge in the computer science aspect of the code development.
These modifications were performed in consultation with project leaders, and have subsequently been
openly distributed to their respective communities for broad use.

All computations below were run in parallel on the Texas Advanced Computing Center’s (TACC’s)
10 PetaFLOPS Dell Linux Cluster based Stampede system, comprised of 6,400+ Dell PowerEdge
server nodes, each outfitted with 2 Intel Xeon E5 (Sandy Bridge) processors and an Intel Xeon Phi
Coprocessor (MIC Architecture). For this study, relatively small meshes were used at low polynomial
order, that ranged from tens of thousands of degrees of freedom, to tens of millions. All runs were
performed in parallel on between 16 to 256 cores.

An outline of the paper is as follows. In section 2 we present the physics-based SOL model for
filamentary blob transport. Here we provide motivation for the system formulation, and heuristically
discuss its features, scope, and limitations. In section 3 we review the formulation of the discontinuous
Galerkin method applied to the mathematical model presented in section 2. We address some salient
features of ArcOn, including the ability to use both multiple solvers (e.g. SIPG, NIPG, etc.) and
various basis functions, including both nodal and modal finite elements. We also describe the upwind-
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ing flux schemes used in the approximate Riemann-type solvers, and the strong stability preserving
temporal discretization scheme employed. In section 4 we discuss the parameters of a classical verifi-
cation study by way of a manufactured solution, and perform numerical experiments that demonstrate
the optimal (to super-optimal in places) convergence order in each operator subsystem of ArcOn. In
section 5 we discuss some of the basic stability features of the DG method, and how regularization
procedures can be used to ensure numerical stability. We present here a basic blob example adjoined to
a new artificial diffusion scheme, and run using a CFL-based variable timestepping algorithm. Finally
in section 6 we show a modon solution to the physics of the system, briefly analyze and vlaidate some
of the cogent numerical properties of blobs, and demonstrate the effectiveness of ArcOn in solving
turbulent plasma dynamics at saturation..

§2 The governing equations

We use a two-dimensional model for the SOL turbulence that describes the evolution of the density
n, the vorticity U , and the electrostatic potential φ. The latter plays the role of a stream-function
for the ion velocity, which is given by the perpendicular E ×B drift velocity VE×B ∼ b ×∇φ (here
b = B/B and E = −∇φ is the electric field). The ez direction is chosen to lie along the magnetic field,
ez = b. The model is based on the assumption that due to rapid transport along the magnetic field,
the quantities of interest have negligible variation in the z direction except at the boundary between
the plasma and the wall where sheath physics enters the equations as a sink term. The coordinate
along the normal to the plasma surface is denoted by x, and the coordinate in the binormal direction
(perpendicular to both ex and the magnetic field) is denoted by y. The model equations are solved
using the variables (x, y, t) ∈ Ω × (0, T ), where Ω is a domain of the (x, y) plane extending over the
SOL in the x direction. The spatial units are normalized relative to a ratio of the ion acoustic speed
cs and the ion gyrofrequency ωci, given in terms of the Bohm gyro-radius ρcs. The equations are

∂tn+ [φ, n] = −α0n+D∇2
⊥n, n|t=0 = n0, n = nb on ∂Ω, (2.1)

∂tU + [φ,U ] = αφ− β[x, lnn] + µ∇2
⊥U, U |t=0 = U0, U = Ub on ∂Ω, (2.2)

U = ∇2
⊥φ, φ|t=0 = φ0, φ = φb on ∂Ω, (2.3)

corresponding to the continuity, vorticity and Poisson equations respectively. The brackets are defined
for scalar-valued functions a and b by, [a, b] = ez · (∇⊥a×∇⊥b). The left-hand sides of (2.1) and (2.2)
represents the convective derivative with respect to the ion fluid. We will also use ∇⊥ ·∇⊥ = ∇2

⊥ = ∆⊥
frequently throughout to represent orthogonal operators. In addition, we will frequently represent our
coordinate chart by pairs in vector form, x = (x, y).

The first equation (2.1) indicates mass conservation of the plasma density n = n(x, t). The
plasma (mass) diffusion on the right is driven by the diffusion coefficient D. The reaction-type term
α0n represents the competition between ionization sourcing and parallel loss at the wall, with α0 ∼
(kα − L‖/cs), where L‖ is the parallel length from the mid-plane to the wall and cs the ion-acoustic
speed.

The second equation (2.2) is frequently referred to as a conservation equation for the vorticity
U = U(x, t). Note that the vorticity variable U is introduced for the sake of clarity, so as to separate
the elliptic equation (2.3) and the dynamic equation (2.2) into two well-defined mathematical subsys-
tems that will be treated individually in our numerical methods. The vorticity, up to a rescaling, is
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determined by the electric field potential φ = φ(x, t), leading to the Boussinesq approximation in the
ion polarization term,

∇ · D
Dt

(
nMc2

B2
∇⊥φ

)
∝ ∂tU + [φ,U ], (2.4)

where M is the ion mass, and c is the speed of light. The term proportional to β represents the effects
of ∇B (caused by toroidal curvature) on the system dynamics. Lastly, the term proportional to µ can
be viewed as a manifestation of classical viscosity, though in practice its magnitude is generally chosen
so that it serves as a numerical regularization term [26, 35].

Below we will occasionally make the implicit assumption that β is a linear function of n, β = Cn
for C a constant, such that the leading n−1 term can be dropped, leading to a stabilized form about
the vacuum, n ≈ 0 (though this instability can always be removed through a basic rescaling argument,
as presented in section 6).

§3 The discretization procedure

Let us discretize our spatial domain Ω. Consider the open set Ω ⊂ R2 with physical boundary ∂Ω,
given T > 0 such that QT = Ω × (0, T ). Let Th denote the partition of the closure of the polygonal
mesh of Ω, which we denote Ωh, into a finite number of polygonal elements denoted Ωe, such that
Th = {Ωe1 ,Ωe2 , . . . ,Ωene}, for ne ∈ N the number of elements in Ωh. Here and below the mesh
diameter h is chosen to satisfy h = minij(dij) for the distance function dij = d(xi,xj) and elementwise
face vertices xi,xj ∈ ∂Ωe when the mesh is structured and regular. For unstructured or irregular
meshes we provide a range over the mesh.

Now, let Γij denote the face shared by two neighboring elements Ωei and Ωej , and for i ∈ I ⊂
Z+ = {1, 2, . . .} define the indexing set r(i) = {j ∈ I : Ωej is a neighbor of Ωei}. Let us denote all Ωei

containing the boundary ∂Ωh by Sj and letting IB ⊂ Z− = {−1,−2, . . .} define s(i) = {j ∈ IB : Sj is
a face of Ωei} such that Γij = Sj for Ωei ∈ Ωh when Sj ∈ ∂Ωei , j ∈ IB. Then for Ξi = r(i) ∪ s(i), we
have

∂Ωei =
⋃

j∈Ξ(i)

Γij , and ∂Ωei ∩ ∂Ωh =
⋃
j∈s(i)

Γij .

We are interested in obtaining an approximate solution to (2.1)-(2.3) at time t on the finite dimen-
sional space of piecewise polynomial functions over Ω restricted to Th, given as

Sph(Ωh,Th) = {v : v|Ωei
∈Pp(Ωei) ∀Ωei ∈ Th}

for Pp(Ωei) the space of degree of (at most) p polynomials over Ωei .

Choosing a set of basis functions Nl for l = 0, . . . , np the corresponding degrees of freedom indexed
by the (spatial) spectral order p of the local element, we can denote the three local solutions in the
modal basis over a finite element cell Ωei as

nihp(t,x) =

np∑
l=0

nil(t)N
i
l (x), and U ihp(t,x) =

np∑
l=0

U il (t)N
i
l (x), ∀ x ∈ Ωei ,

φihp(t,x) =

np∑
l=0

φil(t)N
i
l (x), ∀ x ∈ Ωei ,
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where the N i
l ’s are the finite element shape functions. Let us consider j arbitrary finite dimensional

test functions ζj characterized by

ζij(x) =

np∑
l=0

ζilN
i
l (x), ∀ (x) ∈ Ωei ,

where ζij are the modal coordinates in each Ωei . These functions are chosen as members of the broken
Sobolev space over the partition Th defined by

W k,q(Ωh,Th) = {ω : ω|Ωei
∈W k,q(Ωei) ∀Ωei ∈ Th}.

In particular, when q = 2 and k = 0 we have the standard L2-norm, such that ζj ∈ L2
loc with piecewise

polynomials representations ζij ∈ S
p
h(Ωh,Th). For the d-dimensional vector basis (in our case the spatial

dimension dim = d = 2) we will denote the j arbitrary finite dimensional test functions ξj characterized
as the direct product space, such that in the usual sense, when ζj ∈ L2 with piecewise polynomials
ζij ∈ S

p
h(Ωh,Th), this implies that ξj ∈ [L2]2 with piecewise polynomials ξij ∈ [Sph(Ωh,Th)]2, and so on.

We can equivalently recast the modal discontinuous Galerkin solution into the nodal basis (i.e. the
nodal discontinuous Galerkin solution), by choosing ñp support points in each finite element cell,

V i
hp(t,x) =

np∑
l=0

V i
l(t)ζ

i
l (x) =

ñp∑
`=0

V i
`(x

i
`, t)ϕ

i
`(x), ∀ x ∈ Ωei ,

for nodal basis ϕi`. It should be observed that the nodal and modal solutions are not equivalent, as
discussed in detail in [30]. We also note that ArcOn at present supports 19 different basis functions,
including discontinuous tensor products of Legendre polynomials, Lagrange nodal polynomials, etc.

3.1 The approximation procedure

Next we recast (2.1)–(2.3) in the auxiliary mixed formulation, as satisfying the six simultaneous equa-
tions

∂tn+ [φ, n] = −αn+D∇⊥ · O, O = ∇⊥n, (3.1)

∂tU + [φ,U ] = αφ− β[x, lnn] + µ∇⊥ ·U , U = ∇⊥U, (3.2)

∇⊥ ·E⊥ = U, E⊥ = ∇⊥φ, (3.3)

where we note that substitutions can be made in terms of the “auxiliary variables” {O,U ,E⊥}.

3.1.1 The continuity equation

In order to recover the weak (or variational) form for the finite element solution, we multiply each
equation by a different finite element test function ζ and integrate by parts. Thus the coupled equations
of (6.2) become the pair

d

dt

∫
Ωei

nζi1dxdy =

∫
∂Ωei

DOζi1 · ndxdy −
∫

Ωei

ζi1 (∇⊥φ×∇⊥n) dxdy

−
∫

Ωei

αnζi1dxdy −
∫

Ωei

DO∇⊥ζi1dxdy,∫
Ωei

O · ξi1dxdy =

∫
∂Ωei

nξi1 · ndxdy −
∫

Ωei

n∇⊥ · ξi1dxdy.

(3.4)
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This variational formulation is then projected into the discrete discontinuous space. The mass
diffusion terms on the RHS of (3.4) are solved using the unified mixed method form for elliptic and
parabolic solutions to PDEs [2, 4, 60], where we denote the boundary term by Di(O i

hp, n
i
hp, ζ

i
1). In

this generalized setting we are able to select from a large collection of diffusive numerical fluxes,
such as the local discontinuous Galerkin flux (LDG), the interior penalty Galerkin flux (IPG), the
symmetric interior penalty Galerkin flux (SIPG), and the nonsymmetric interior penalty Galerkin flux
(NIPG), etc. Effectively this reduces to selecting a particular type of numerical behavior that relates
to stability, consistency, and convergence properties of the numerical solution, which will be discussed
in more detail below. The auxiliary equation in (3.4) is formatted in essentially the same way, where
here the boundary flux is represented by Ni(n

i
hp, ξ

i
1).

3.1.2 The ion polarization

The variational form of the vorticity equation (6.3) is almost the same, but with the addition of the
curvature term:

d

dt

∫
Ωei

ζi2Udxdy = −
∫

Ωei

ζi2 (∇⊥φ×∇⊥U) dxdy −
∫

Ωei

ζi2β
(
∇⊥x× n−1∇⊥n

)
dxdy

+

∫
Ωei

ζi2αφdxdy +

∫
∂Ωei

ζi2µU · ndxdy −
∫

Ωei

µU ∇⊥ζi2dxdy,∫
Ωei

ξi2 ·U dxdy =

∫
∂Ωei

ξi2 · Undxdy −
∫

Ωei

U∇⊥ · ξi2dxdy,

(3.5)

where again the cross products in the ion polarization term represent the same choices as those given
above.

As above with the continuity equation, we now project the weak formulation into the piecewise
polynomial representation space. The diffusive terms of (3.5) are solved in the same way as those
in (3.4), where Mi(U i

hp, φ
i
hp, ζ

i
2) represents the diffusive boundary term, and the auxiliary numerical

boundary term is given by Q̂i.

3.1.3 The convective fluxes

The convective fluxes for this system demonstrate some unique difficulties in comparison to those
presented by standard divergence form flux-based solvers. Namely, the bracketed term is a cross
product of gradients that has no exact algebraic divergence form Jacobian. That is, even though for
example [a, b] = ∇ · (aez × ∇b), the arguments to the divergence operator are differential and not
algebraic. Hence the usual Jacobian matrix of the term is different than those often encountered in
computational fluid dynamics, where standard implementations of Riemann solvers such as Roe or
Lax-Friedrichs are straight forward to implement. These bracketed fluxes are however, quite common
in plasma physics, and thus must be addressed. We do so here by applying a standard upwinding
approach to each equation separately, thus inducing a slightly weaker coupling than the some common
Riemann solvers (e.g. the Roe solver). It remains an open question what flux formulation might be
used to strengthen this coupling, but in this direction we point the reader to the potential of using
cosymplectic forms [56] to tensorialize the flux Jacobian into an eigenproblem.
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To form our upwinding scheme, we first notice that expanding the cross product term of the mass
equation generates twisted mixed partials,

−
∫

Ωei

ζi1 (∇⊥φ×∇⊥n) dxdy = −
∫

Ωei

ζi1
∂φ

∂x

∂n

∂y
dxdy +

∫
Ωei

ζi1
∂n

∂x

∂φ

∂y
dxdy. (3.6)

that drives the convective transport of the density.
A naive coupling can be chosen that simply linearizes the solution relative to the auxiliary terms,

corresponding to an electric field E⊥ = ∇⊥φ = (Ex, Ey) and density gradient O = (Ox,Oy), such that
(3.6) can be written as

The quasistrong flux :
{∫

Ωei
ζi1 (∇⊥φ×∇⊥n) dxdy =

∫
Ωei

ζi1 (E⊥ × O) dxdy. (3.7)

This form of (3.6) is characterized as a quasistrong linearization as it forces the convective transport
through the diffusive fluxes, as can be seen more explicitly below.

An alternative to (3.7) is to expand (3.6) into a stronger form, by rebalancing the components of
(3.6) across the boundary terms, thus inducing a proper convective flux as:

The strong flux :



−
∫

Ωei
ζ2
∂φ
∂x

∂n
∂y dxdy = −1

2

∫
∂Ωei

ζ2φOynxdxdy + 1
2

∫
Ωei

φOy
∂ζ2
∂x dxdy

−1
2

∫
∂Ωei

ζ2nExnydxdy + 1
2

∫
Ωei

nEx
∂ζ2
∂y dxdy,∫

Ωei
ζ2
∂n
∂x

∂φ
∂y dxdy = 1

2

∫
∂Ωei

ζ2φOxnydxdy − 1
2

∫
Ωei

φOx
∂ζ2
∂y dxdy

+1
2

∫
∂Ωei

ζ2nEynxdxdy − 1
2

∫
Ωei

Eyn
∂ζ2
∂x dxdy.

(3.8)

In the vorticity equation, the first term on the RHS of (3.5) can be split up in the same way as the
cross product terms from the density equation (3.6), where again the vector splits into its components
U = (Ux,Uy). Again we can choose the quasistrong representation:

The quasistrong flux :
{∫

Ωei
ζi2 (∇⊥φ×∇⊥U) dxdy =

∫
Ωei

ζi2 (E⊥ ×U ) dxdy, (3.9)

that utilized the linearized variables for convection transport. Similarly, as with the mass equation,
the strong case follows here as well

The strong flux :



−
∫

Ωei
ζ2
∂φ
∂x

∂U
∂y dxdy = −1

2

∫
∂Ωei

ζ2φUynxdxdy + 1
2

∫
Ωei

φUy
∂ζ2
∂x dxdy

−1
2

∫
∂Ωei

ζ2UOxnydxdy + 1
2

∫
Ωei

UOx
∂ζ2
∂y dxdy,∫

Ωei
ζ2
∂U
∂x

∂φ
∂y dxdy = 1

2

∫
∂Ωei

ζ2φUxnydxdy − 1
2

∫
Ωei

φUx
∂ζ2
∂y dxdy

+1
2

∫
∂Ωei

ζ2EyUnxdxdy − 1
2

∫
Ωei

EyU
∂ζ2
∂x dxdy.

(3.10)

The major difference in the vorticity equation is the inclusion of the curvature term, β∂y lnn. Here
again we are presented with a choice of convective flux in the upwinding. Phenomenologically it is
often that case that the scaling of the β curvature flux is small relative to the ion polarization flux.
As a consequence the semistrong flux can be written:

The semistrong flux :
{
−
∫

Ωei
ζi2β

(
∇⊥x× n−1∇⊥n

)
dxdy = −

∫
Ωei

ζi2β
(
∇⊥x× n−1O

)
dxdy.

(3.11)
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By semistrong we mean that this weaker version of the curvature term (3.11) is coupled to the stronger
version of the ion polarization term (3.10). When the quasistrong flux is used, the entirety of the flux
system is characterized as quasistrong. However, in this context we can again restrict to the completely
strong flux form:

The strong flux :
{
−
∫

Ωei
βζ2

∂ lnn
∂y dxdy = −

∫
∂Ωei

β lnnζ2nydxdy +
∫

Ωei
β lnn∂ζ2∂y dxdy. (3.12)

We will show some numerical results for these different choice of fluxes below.

3.1.4 The elliptic subsystems

As it turns out, solving elliptic subsystems (such as the Poisson equation) is somewhat more involved
than solving convection dominated subsystems, as elliptic problems for example require solving a global
linear system numerically. Thus we will use the Poisson subsystem to demonstrate how the numerical
fluxes can be chosen in order to form a well-conditioned linear system.

First note that (3.3) can be written as,∫
∂Ωei

ζi3E⊥ · ndxdy −
∫

Ωei

E⊥ ·∇⊥ζi3dxdy =

∫
Ωei

ζi3Udxdy,∫
Ωei

E⊥ · ξi3dxdy =

∫
∂Ωei

ξi3 · nφdxdy −
∫

Ωei

φ∇⊥ · ξi3dxdy,
(3.13)

where the second equation provides the solution to the electric field. Approximating the first equation
of (3.13) componentwise, we find that the first term on the LHS and the source term on the RHS are
each approximated in the usual way:∫

Ωei

E⊥ ·∇⊥ζi3dxdy ≈
∫

Ωei

(E⊥)ihp ·∇⊥ζi3dxdy and

∫
Ωei

ζ3Udxdy ≈
∫

Ωei

ζ3U
i
hpdxdy.

The remaining term leads to another numerical flux Êi, such that

Ei((E⊥)ihp, ζ
i
3) =

∑
j∈Ξ(i)

∫
Γij

Êi((E⊥)ihp|Γij , (E⊥)ihp|Γji) · nijζi3|Γijdxdy

≈
∑
j∈Ξ(i)

∫
Γij

dim∑
l=1

((E⊥)ihp)l(nij)lζ
i
3|ΓijdΞ.

Likewise the first and last terms in the auxiliary equation of (3.13) are approximated using,∫
Ωei

E⊥ · ξi3dxdy ≈
∫

Ωei

(E⊥)ihp · ξi3dxdy and

∫
Ωei

φ∇⊥ · ξi3dxdy ≈
∫

Ωei

φihp∇⊥ · ξi3dxdy

where the numerical flux T̂i becomes:

Ti(θ
i
hp, ξ

i
3) =

∑
j∈Ξ(i)

∫
Γij

T̂i(θ
i
hp|Γij , θ

i
hp|Γji)nij · ξi3|Γijdxdy

≈
∑
j∈Ξ(i)

∫
Γij

dim∑
l=1

(θihp)|Γij (nij)l(ξ
i
3)|ldΞ.

(3.14)
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First we define the jump J·K and average {·} for a vector v on the shared interior faces as,

JvK = v1 · n1 + v2 · n2, and {v} =
1

2
(v1 + v2) .

If we further let the union of the discrete boundaries of the domain be denoted by Γ and define the
edge values without the physical boundary as Γ0 = Γ \ ∂Ω, then using this notation, it is a direct
computation to check that we can rewrite our fluxes, for example (3.14), in the form:

Ti(θ
i
hp, ξ

i
3) =

∑
j∈Ξ(i)

∫
Γij

T̂i(θ
i
hp|Γij , θ

i
hp|Γji)nij · ξi3|Γijdxdy

=

∫
Γ
JT̂iK · {ξi3}dxdy +

∫
Γ0

{T̂i}Jξi3Kdxdy.
(3.15)

If we use this form on both the numerical fluxes in (3.13) and perform another integration by parts
on the last term in the auxiliary equation, we have that the full auxiliary equation can be written:∫

Ωei

E⊥ · ξi3dxdy =

∫
Γ
JT̂i − φihpK · {ξi3}dxdy +

∫
Γ0

{T̂i − φihp}Jξi3Kdxdy +

∫
Ωei

ξi3 ·∇⊥φihpdxdy. (3.16)

Now we define the lifting operators over the shared edges Γ, as∫
Ωe

r(v) · ξdxdy = −
∫

Γ
v · {ξ}dxdy, and

∫
Ωe

l(w) · ξdxdy = −
∫

Γ0

wJξKdxdy

such that (3.16) can be rewritten in the primal formulation as,∫
Ωei

E⊥ · ξi3dxdy =

∫
Ωei

ξi3 ·∇⊥φihpdxdy −
∫

Γ
r(JT̂i − φihpK)ξi3dxdy −

∫
Γ0

l({T̂i − φihp})ξi3dxdy. (3.17)

Applying these same operations to the equations in (3.13), where we substitute (3.16) into the first
equation of (3.13) by substituting for ξi3 the term ∇⊥ζi3, then we arrive with the following bilinear
primal form of the first equation,∫

Ωei

E⊥ ·∇⊥ζi3dxdy +

∫
Γ

(
JT̂i − φihpK · {∇⊥ζi3} − {Êi}Jζi3K

)
dxdy

+

∫
Γ0

(
{T̂i − φihp}J∇⊥ζi3K− JÊiK{ζi3}

)
dxdy = −

∫
Ωei

ζi3Udxdy

(3.18)

It is this formulation (3.18) and (3.17) from which arises the“choice”of numerical fluxes in parabolic
and elliptic subsystems. There are large classes of such fluxes to choose from, many of which have
been studied in depth with specific aims in mind, such as particular advantages in stability, efficiency,
and/or rates of convergence. One of the more robust of these methods is the classic interior penalty
method [3]. The classical choice of fluxes for the IPG method corresponding to the Poisson equation
would be

T̂i = {φihp} on Γ0, T̂i = 0 on ∂Ω, and Êi = {∇⊥φihp} − σJφihpK on Γ.
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Plugging these fluxes in (3.18) and (3.17) then directly yields,∫
Ωei

E⊥ ·∇⊥ζi3dxdy −
∫

Γ

(
JφihpK · {∇⊥ζi3}+ {E⊥} · Jζi3K + σiJφihpKJζ

i
3K
)
dxdy = −

∫
Ωei

ζi3Udxdy,

(3.19)
where σi is the penalty parameter.

More generally, we can rewrite (3.19) in terms of a parameter %,∫
Ωei

E⊥ ·∇⊥ζi3dxdy −
∫

Γ

(
JφihpK · {∇⊥ζi3}+ %{E⊥} · Jζi3K + σiJφihpKJζ

i
3K
)
dxdy = −

∫
Ωei

ζi3Udxdy,

(3.20)
such that % = 1 gives the classic IPG method (or symmetric interior penalty method, SIPG), % = 0
gives the incomplete interior penalty method (IIPG) [18], and % = −1 gives the nonsymmetric interior
penalty method (NIPG) [58]. Also note that whenever appropriate σi is chosen to satisfy the super-
penalization property [60] in order to improve the convergence order.

Notice thus far that this only provides a solution up to the boundary ∂Ω terms. To recover the
nonperiodic boundary forcing we apply Nitsche’s weak boundary conditions, setting

−
∫
∂Ωeb

ζb3
∂φbhp
∂n

dxdy =

∫
∂Ωeb

σbζ
b
3

(
φbhp,b − φbhp

)
dxdy, (3.21)

and integrating by parts. In this way we recover the total linear system for the initial-boundary
problem (3.15), (3.17), and (3.21), which we rewrite as:∫

Ωei

E⊥ ·∇⊥ζi3dxdy −
∫

Γ

(
JφihpK · {∇⊥ζi3}+ %{E⊥} · Jζi3K + σiJφihpKJζ

i
3K
)
dxdy

−
∫
∂Ωeb

{
∂

∂n

(
ζb3φ

b
hp

)
− φbhp

∂ζb3
∂n

}
dxdy = −

∫
Ωei

ζb3Udxdy +

∫
∂Ωeb

σbζ
b
3

(
φbhp,b − φihp

)
dxdy.

(3.22)

The above formulation is referred to in the literature as the primal formulation for an elliptic
system, and is essential for constructing a stiffness matrix. However, the fluxes arising in the parabolic
subsystems of the convection dominated flows above (i.e. the diffusion component of the mass and
vorticity conservation equations) can be directly obtained in a time–explicit solver simply by inserting
the fluxes. For this purpose, we employ the consistent and stable Brezzi flux [11]

T̂i = {φihp} on Γ0, T̂i = 0 on ∂Ω, and Êi = {(E⊥)ihp} − σJφihpK on Γ,

where the penalty is a positive constant σ > 0.

3.2 The formulation

The semi-discrete form of the solution can be achieved by collecting the terms above. First define the
state vectors V i

hp = (nihp, φ
i
hp)
>, ζi = (ζi1, ζ

i
2)> and Σi

hp = (O i
hp,U

i
hp)
>, ξi = (ξi1, ξ

i
2)>. Now define the

product terms by setting

χihp =
(
(E⊥)hp × Ohp,

(
E⊥)ihp ×U i

hp

)
+ β

(
(∇⊥x× (nihp)

−1O i
hp)
))>

,

γihp = (αnihp,−αφihp)>, and I i
hp = (DO i

hp, µU i
hp)
>,



12 DG methods for plasma physics in the scrape-off layer of tokamaks

the numerical fluxes can be set such that F i
hp = (Di,Mi)

> and Ahp = (Ni,Qi)
>, and we further

define:

ΓG =

∫
Γ

(
JφihpK · {∇⊥ζi3}+ %{E⊥} · Jζi3K + σiJφihpKJζ

i
3K
)
dxdy,

Then setting Xhp =
∑

Ωei∈Th
X i
hp, and letting the generalized scalar product

(ahp, bhp)ΩG =
∑

Ωei∈Thp

∫
Ωei

aihp · bhp dxdy,

we can write our semidiscrete approximate solution to (2.1)-(2.2) as the pair of functions (Vhp,Σhp)
for all t ∈ (0, T ) satisfying:

The semidiscrete discontinuous Galerkin formulation

a) Vhp ∈ C1([0, T );Sph), Σhp ∈ Sph,
b) Vhp(0) = ΠhpV0,

c) (Uhp, ξ)ΩG = Ahp − (Uhp,∇⊥ · ξ)ΩG ,

d)
d

dt
(Vhp, ζ)ΩG = Fhp − (χhp, ζ)ΩG − (γhp, ζ)ΩG − (Ihp,∇⊥ζ)ΩG ,

e) (E⊥,∇⊥ζ3)ΩG − ΓG = −(ζ3, Uhp)ΩG + boundary terms

(3.23)

where Πhp is the projection/interpolation operator onto the space of discontinuous piecewise polyno-
mials Sph. In the modal basis we utilize the standard L2–projection, given for a function f0 ∈ L2(Ωei)
such that our approximate projection f0,h ∈ L2(Ωei) is obtained by solving,

∫
Ωei

f0,hζdx =
∫

Ωei
f0ζdx.

In the nodal DG setting, on the other hand, we use the interpolation operator.
The discretization in time follows now directly from (3.23), where we employ the family of SSP

(strong stability preserving, or often “total variation diminishing (TVD)”) Runge–Kutta schemes dis-
cussed in [36, 38, 63, 66]. These schemes are chosen as (3.23) is a convection dominated evolution
equation, and thus the above SSPRK schemes are well-suited for enhancing the stability regions of
the associated spectrum of the hyperbolic operators (in the usual sense of linear von Neumann analy-
sis). In the case of reaction-type or diffusion-type dominated system, the RKSSP family chosen is not
necessarily ideal, which is directly analyzed in a concurrent work [51].

§4 Numerical tests

The numerical residual eh for any solution component (e.g. we use φ here) is given by eh = φ − φhp,
where φ is the solution to (2.3) and φhp its discrete approximate counterpart. This measure will
be enough to determine the convergence order and many aspects of the numerical behavior of the
solution relative to its analytic counterpart. Notice that since ArcOn utilizes both modal and nodal
basis functions, there is a potential ambiguity that arises in the error measures. Namely, the initial
state of the system φhp|t=0 must be either projected or interpolated into the appropriate discrete basis.
This projection error in the modal DG case, or interpolation error in the nodal DG case, is frequently
nonzero (e.g. always nonzero for analytic functions), and has a convergence order of its own relative
to the exact solution.

For the remainder of the paper we will restrict to the nodal DG case, and focus rather on the model
error and not the way in which the truncation error distributes about the representation space. In
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this sense, since we expect our variational strong solutions in the L2-norm to inherit an inner product
space, we will concern ourselves with the L2-norm of the model error,

‖eh‖L2(Ωh) =

(∫
Ωh

e2
hdxdy

)1/2

.

Without having performed the error analysis on (2.1)–(2.3), we assume (as is conventional) that given
smooth initial data with well-constrained boundary behavior, the solution converges at the optimal
error rate ‖e‖L2(Ωh) ≤ Chp+1. We can estimate the error rate in our numerical tests C by computing
the slope,

C =
1

ln(2)
ln

(
‖eh‖L2(Ωh)

‖eh/2‖L2(Ωh
)

)
,

where this measure C is characterized as the convergence rate of the method.

4.1 Elliptic verification

Let us proceed by demonstrating the numerical convergence of the components of our system for some
numerically well-behaved problems. First we begin with the elliptic solver. Consider the Poisson
equation with Dirichlet boundary data

U = ∇2
⊥φ, φb = Ub = 0 on ∂Ω.

A solution is chosen so as to satisfy

φ = 1× 10−2e(−x2/2−y2/2)

over the domain x ∈ [−30, 30], y ∈ [−20, 20].
The mesh is chosen to be uniform and quadrangular, where for the sake of brevity, we utilize

the classic IP method (SIPG) here. Here the stiffness matrix is preconditioned using a BoomerAMG
algebraic multigrid preconditioner from the LLNL HYPRE suite coupled through PETSc. The conver-
gence threshold is set to 1×10−12 and superpenalization is used. The case was tested in parallel using
between 16 and 96 processors, for twelve test cases with p ∈ {1, 2, 3} and h ∈ {1/8, 1/16, 1/32, 1/64}.
Note that h here is set relative to dy which has a 1 : 3/2 aspect ratio to dx; thus, h = 64 implies
here that dy/64 and dx/96, etc. The finite element space used here were nodal Lagrange interpolating
polynomials with support points at the Gauss-Legendre quadrature points. The resulting convergence
rates and errors are provided in Table 1, indicating the expected behavior.

The graphs in figure 1 are provided to help develop an intuition for the error weighting across a
Gaussian type solution in the local spatially spectral basis. It should be duly noted here that in the
SIPG method, eh is highly dependent on the penalty term σ. In the graphs of figure 1 the penalty
term is held constant σ = 1000, and the error residual eh is plotted; hence it is important to realize
that these do not represent fully convergent cases.

4.2 Hyperbolic-parabolic verification

Next we address the convergence properties of the explicit convection-diffusion problems. Here we
consider the continuity equation:

∂tn+ [φ, n] + αn−D∇2
⊥n = f, n|t=0 = n0, n = nb on ∂Ω, (4.1)
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Figure 1: The residual α2 = eh of the Poisson convergence tests, in clockwise order from top, exact
solution, (p = 1, h = dx/12, dy/8), (p = 2, h = dx/12, dy/8), (p = 3, h = dx/12, dy/8), (p = 7, h =
dx/12, dy/8), and (p = 3, h = dx/96, dy/64).

p σ L2(Ωh) h C

1 13
4 7.46285× 10−3 dx/96, dy/64 2.0483

2 12 7.583588× 10−4 dx/96, dy/64 3.0512

3 90 8.228863× 10−5 dx/96, dy/64 4.0376

Table 1: The L2-error and convergence behavior of the nodal DG solution for the Poisson solver. The
distance dx = 60 and dy = 40.

and use the standard manufactured solutions method. We set,

n = te−(x2+y2)/2, φ = γ cos(x) cos(y).
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p γ,D L2(Ωh) h C

1 0.1, 0.01 3.07778× 10−2 π/16 2.5772

2 0.1, 0.01 1.33313× 10−2 π/16 3.0362

3 0.1, 0.01 7.48107× 10−5 π/16 4.3602

Table 2: The L2-error and convergence behavior of the nodal DG solution for the continuity equation.
To completely quench CFL related errors and temporal error, the timestep taken is dt = 1×10−4 with
SSPRK(6,4). Errors are taken to 200 timesteps, or T = 0.02.

The reaction term, when viewed through the lens of a fractional multistep method, is simply a linear
first order ordinary differential equation whose numerical stiffness can be scaled by α, as |α| is the
stiffness index. As such, it is fairly well-understand, and thus not the focus of our present study.
Hence, we set α = 0 for the convergence test. Let us note here that fast reaction modes may be split
using operator splitting techniques, though this topic lies beyond the scope of this present review (see
[52] for previous work in this area), and we can assume that diffusion and reactions modes operate on
similar timescales for our present purposes.

The test domain is chosen as Ω = [−2π, 2π]2 with fully periodic boundary conditions, such that in
order to satisfy the exact equation the manufactured source term must be set to:

f =
(
1 + txγ cos(x) sin(y)− tyγ sin(x) cos(y) + 2Dt−Dtx2 −Dty2

)
e(−(x2−y2)/2,

where γ = 0.1 and D = 0.01. These results are notated in Table 2 where we are pleased to observe
that in this particular instance, ArcOn is demonstrating superconvergence in h for p odd. This is
notable as we have set the penalty σ from the Brezzi flux to machine epsilon, effectively reducing to a
standard Bassi-Rebay type flux [8], which has good convergence properties but may want for stability
when employed for highly nonlinear applications. Also we have set the convective fluxes here to the
strong flux form (3.8).

For the vorticity equation we perform a similar periodic test case,

∂tU + [φ,U ]− αφ+ β[x, lnn]− µ∇2
⊥U = g U |t=0 = U0, U = Ub on ∂Ω,

where using the same rational as above α = 0. In this case the following exact forms are chosen for
the three fields:

U = (t+ 1)e(x2+y2)/2, φ = cos(x) cos(y), lnn = γesech(x)sechy.

Now the source term over the same physical domain Ω becomes:

g = f − γsech(x)sech(y) tanh(y)esech(x)sech(y).

The convergence results are shown in Table 3 and Table 4 and run using equidistant nodal Lagrange
polynomial spaces evaluated using Gauss-Lobatto cubature rules. What is most notable here is that
the strong and the quasistrong fluxes demonstrate essentially equivalent convergence behavior for this
test case. Even in figure 2 the error residual is indistinguishable between the two solutions. Further
testing of these flux formulations has demonstrated that the quasistrong and semistrong fluxes have
very similar behavior to the strong form in the standard settings We will return to this in slightly
more detail in section 5.1.
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Figure 2: The residual α2 = eh of the vorticity convergence tests. In clockwise order from top
left, p = 1, h = π/16 strong flux, p = 2, h = π/16 strong flux, p = 3, h = π/16 strong flux, and
p = 3, h = π/16 quasistrong flux.

p γ,D L2(Ωh) h C

1 0.1, 0.01 6.21249× 10−3 π/64 2.3311

2 0.1, 0.01 1.57556× 10−3 π/64 3.5003

3 0.1, 0.01 7.48107× 10−5 π/64 4.9782

Table 3: The L2-error and convergence behavior of the nodal DG solution for the vorticity equation
using the strong fluxes (3.10) and (3.12). As above the timestep taken is dt = 1×10−4 with SSPRK(6,4)
and T = 0.015.

4.3 Streamer validation

A simple physically relevant case to test the system on, is blob formation in the scrape-off layer of
tokamaks. Here we set the domain to Ωh = [−7, 7]× [−12, 12], setting periodic boundary conditions.
The initial state of the system scaled to dimensionless units [5] is:

n0 = e−(x2+y2)/2 and φ0 = U0 = 0.
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p γ,D L2(Ωh) h C

1 0.1, 0.01 6.24371× 10−3 π/64 2.3311

2 0.1, 0.01 1.56755× 10−3 π/64 3.5077

3 0.1, 0.01 1.28545× 10−5 π/64 4.9705

Table 4: The L2-error and convergence behavior of the nodal DG solution for the vorticity equation
using the quasistrong fluxes (3.9) and (3.11). As above the timestep taken is dt = 1 × 10−4 with
SSPRK(6,4) and T = 0.015.

Figure 3: Here we see the SOL streamer with D = µ = 3 × 10−2 at T = 13.2. The top images show
the strong flux solution, and the bottom show the quasistrong solution. In order the variables shown
from left to right are: O, φ, U,E⊥, and U .

The boundaries conditions are periodic in x, and transmissive (or radiative) in y, meaning that the
solution on the outer face is set equal to the value taken on the inner face at the boundary.

We have benchmarked this traveling blob solution as shown in figure 10 against BOUT++ [23]
and Garcia, Bian, and Fundamenski [26], and found (as similarly discussed by Aydemir [5] though in
a different context, see Fig. 5) that the formation of sharp gradients in the leading blob edge portend
the formation of instabilities. In the low viscosity/diffusion limits (e.g. Ra < 10−8) artificial diffusion
as discussed in section 5, can be used to dampen these effects, and done so with very satisfying results.

In figure 3 we show a slightly different view of the solution, comparing various numerical features.
In this test, as in the remainder of the paper, we use a discontinuous tensor product of Lagrange
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polynomials with arbitrary nodal support points in order to preserve the diagonal mass matrix. Here
α = α0 = 0 and β = 1. We use 8192 quadrangular elements, p = 3 giving 1179648 degrees of freedom.
The elliptic subsystem was solved using SIPG with the same settings from section 4.1, given the
penalty parameter σ = 75, and the variable timestepper described in section 5 is also used. All tests
were run on 64 processors.

In figure 3 some of the aspects of the solution are shown, where again it is clear that little difference
exists between the strong and the quasistrong fluxes. The nuance that exists between the different
flux forms can be found in the semistrong flux relative to the formulation of the system of equations.
Namely, when (2.1)-(2.3) is solved relative to the n-independent toroidal curvature term β. In this
case, given an absence of scale separation in the background plasma density, the leading term in (3.11)
becomes unmanageable in the semistrong flux, and the only alternative is to use a numerical cutoff
around the vacuum in the strong flux form. However, when the curvature term is reformulated, then
the semistrong flux shows similar behavior to the strong and quasistrong fluxes, since then it is merely
a mixture between the two. It is also worth noting that preliminary numerical tests suggest that
the strong form may in some cases be better suited for numerical runs utilizing the regularization
techniques discussed in section 5, in order to recover solutions in stable parameter spaces under more
amenable timestepping constraints. The quasistrong and semistrong fluxes in the linear case, however,
show better stability and performance features as the diffusion coefficients µ and D are increased.
This observation indicates a subtle and delicate interplay between the flux forms when coupled with
regularization techniques, and requires careful and further analysis, particularly as the regularization
techniques require tuning parameters. Finally a notable feature of the solution is the structural
consistency in the vorticity U and gradient of the vorticity U in figure 3. Indeed the sharp leading
edge of the vorticity gradient can be a source of instability in blob simulations, and the recovery of
these profiles indicates a noteworthy robustness in the numerical formulation.

§5 Regularization processes

As the system of equations (2.1)–(2.3) is convection-dominated, dispersive, gradient driven and non-
local, it presents its own set of numerical complications and nuances. For example, the cross product
terms induce convective nonlinearities that are driven by dispersive modes. As a result, in a strict
mathematical sense the natural function space that support solutions to such a system is highly ir-
regular, and in all likelihood local in its signature behavior (e.g. Lploc(Ω)). While this bodes well
for justifying the use of a method such as DG, which is able to probe such a space with high order
accuracy, it also introduces instabilities into the space. There are a number of methods for regularizing
a DG solution, some of the most popular of which have traditionally included slope or flux limiting
methods [39–41] , energy stabilization techniques [52, 54], and spectral filtering [55]. Here we regular-
ize (2.1)–(2.3) by way of artificial diffusion, which is capable of preserving physical nonlinearities in
the solution to higher resolution in p.

5.1 Artificial diffusion and gradient driven flow

A frequent source of concern in nonlinear numerics is the development of instabilities that pollute
solution accuracy. In a DG method these instabilities are augmented by the fact that interelement
jumps are usually nonzero, and thus whenever large gradients become dominant, numerical shocks can
lead to local pollution of solution accuracy order [55]. A particularly nice solution to such behavior
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is provided by the addition of so-called artificial diffusion/viscosity into the right hand side operator
[71, 76]. The basic idea is to preserves solution nonlinearities by exploiting the high order behavior of
the Laplace operator, while simultaneously stymieing local instability formation. This approach can be
physically motivated in that the methodology is very closely related to the artificial viscosity techniques
that arise in classical large eddy simulation models for fluids [10, 47], with the only significance
difference being in the details of the smoothing algorithm, which is here tuned for (2.1)-(2.3). Like
those models, the extra viscosity/diffusion that is added can be interpreted a priori as arising from
fine scale dissipation effects due to locally large energy gradients, though this interpretation requires
care and further study to be made precise, and to confirm that the affects of the smoothing operation
can, or in some parameter regimes might be physically motivated.

Formulating the artificial diffusion/viscosity is achieved by supplementing the diffusion components
of (2.1) and (2.2) with the slightly perturbed system

∂tn+ [φ, n] = −α0n+ (D + ε1)∇2
⊥n, n|t=0 = n0, n = nb on ∂Ω, (5.1)

∂tU + [φ,U ] = αφ− β[x, lnn] + (µ+ ε2)∇2
⊥U, U |t=0 = U0, U = Ub on ∂Ω, (5.2)

U = ∇2
⊥φ, φ|t=0 = φ0, φ = φb on ∂Ω, (5.3)

where the εi = εi(t,x) are functions of space and time, and represent the stabilizing artificial diffu-
sion/viscosity parameters.

These parameters are determined by using local regularity (or entropy) measures that are meant
to sense the onset and formation of locally destabilizing numerical shock fronts. These sensors are
often formed by way of modal truncation or through the use of mathematical entropies. In our case,
since we are concerned with a gradient driven dispersive flow, we develop a regularity sensor that
identifies large local variations in the solution by way of sensing the norm of the gradient over the
global maximun. That is, for a vector v we set the entropy sensor

Sij(t,x) =

(
L∞loc(∇⊥vih)

supΩh
vh

)
for Ωi ∈ ΩH and j = 1, 2

where j runs over the indices of the state vector. Note that the gradient here is approximated in the
mixed form here by the support variables O,U ,E⊥.

This sensor is used to determine which cells Ωi should be “regularized.” Each component of the
artificial diffusion εj is calculated cell-wise Ωi by setting

εij =


0, if Si < S0 − κ
εi
2 ∗ sin

(
π
(
Si−S0+κ

2κ

))
, if S0 − κ ≤ Si < S0 + κ

εi, if Si ≥ S0 + κ

Reasonably good starting points for the tuning parameters are S0 ∼ maxΩh
S(0,x), ε ∼ h/p, and

κ ∼ AvgΩh
S(0,x).

In addition to the artificial regularization above, we implement a CFL-based variable timestepping
algorithm. The basic algorithm is inspired by [19], where the timestep is approximated by a CFL-
type constraint, though in [19] the variable timestepper is determined locally in space, meaning that
subdomains have different timesteps. Here our variable timestepper varies only in time, not in space,
and is based on a single spatially global estimate of the most restrictive CFL condition. That is, we
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Figure 4: The top row is the SOL blob with εi = 0, D = µ = 3 × 10−2, at the middle row with
εi = 3× 10−2, D = µ = 1× 10−8, S0 = 2, κ = 1.9, and the bottom row is εi = 0, D = µ = 1× 10−8.
See the text for which timesteps are being shown.



§5 Regularization processes 21

set dt = minΩh
h/(2p+ 1)E, where E(t) is the maximum wavespeed at any timestep. This timestep is

not optimal for p > 2 but does guarantee that the CFL constraint is maintained throughout [17, 69].
In figure 4 we show results from the streamer validation tests in section 4.3 using variable timestep-

ping and setting Ωh = [−5, 5]× [−20, 20] where the y-direction is elongated to reduce boundary effects
from the electric field. We solve this system over a small domain of 3072 uniform finite elements dis-
tributed across 64 processors. There are 3 components, with degree p = 3 polynomials, making 442368
total degrees of freedom in the computation. The wall clock time is approximately 5 minutes, running
to 3600 timesteps. The top row of the figure shows the results with no artificial diffusion/viscosity,
but with enough native diffusion/viscosity to maintain a stable solution; namely D = µ = 3× 10−2.

The five snapshots are at approximate times due to the variable timestepper, T ≈ 0, 3, 6, 14, 17
where this corresponds to timesteps 0, 100, .300, 1000, 1300. Similar snapshots are shown in the second
row where artificial diffusion/viscosity has been added, setting εi = 3 × 10−2, D = µ = 1 × 10−8,
S0 = 2, κ = 1.9 corresponding to timesteps 0, 200, 600, 2300, 3000. Clearly the artificial regularization
adds some expense to the computation in terms of computational complexity. The faster traveling
modes in the lower diffusion case also restricts the CFL-based variable timestepper, leading to more
total timsteps as well. It is important to note that adjusting κ and S0 can have a fairly large impact
on the solution behavior. Moreso, we see what we might qualitatively expect from a solution with
globally lower effective diffusion, which is a fster traveling blob that demonstrates the formation of
more fine-scale features in the flow. Finally the third row shows the low diffusion solution without any
regularization. Here the snapshots are at T ≈ 0, 2.6, 2.8 corresponding to timesteps 0, 5000, 10000. It is
clear that sharp gradients start to form early in the calculation, leading to sharp numerical instabilities
along the leading edges, and jump discontinutities that rapidly pollute the solution and send the CFL
condition towards machine epsilon.

A more difficult problem is the case of turbulent edge modes at high resolution. To demonstrate
the numerical behavior of ArcOn under such conditions, we take (2.1)-(2.3) with the addition of
non-vanishing parallel loss at the wall α0 6= 0, and a plasma sourcing

η =

{
| sin(y/10)|/100 if x ≤ 0,

0 otherwise,

transforming (2.1) into
∂tn+ [φ, n] = −α0n+ η +D∇2

⊥n.

Here the initial state of the system is initialized with,

n0 = e−(x2+y2)/100/100 and φ0 = U0 = 0,

effectively producing a density cascade into the dipole center (i.e. the central vanishing isocontour of
φ) at y = 0 as the streamers develop.

This case demonstrates one of the basic difficulties that can emerge in turbulence studies, were
large dynamic gradients form in the solution and turbulent vortices cascade into each other at high
frequencies. We show this basic result in figure 5. Here 32768 finite elements with discontinuous tensor
product of Lagrange polynomials and arbitrary nodal support points are used with p = 3 elements
solved over 256 processors. The diffusion parameters are set to D = µ = 0.05 and the strong flux
forms are used.

In figure 5 we push with a sourcing that is quite strong, as η ∼100α0 leading to plasma accumulation
along the edge. Here we have used the alternative form of the equations as in [26], where β = 5α0n
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Figure 5: The top graphs show n,E⊥ and U at T = 1133.8, while the bottom shows the same
components at T = 1979.6.

and α = 10−4. In this case we are able to recover the solution using the strong flux, and as is clear
in figure 5, sharp profiles along edges are being nicely captured, even without the addition of artificial
viscosity.

§6 Physical solutions

6.1 Modon solutions

Physical modons (or dipole drift vortices) emerge as important solutions in a number of fields, such
as geophysical fluid dynamics [42], coastal dynamics [65] and atmospherics [27, 57]. Intuitively these
objects are often discussed in tandem with their counterpart, monopolar vortices, which in the parlance
of atmospheric science correspond to phenomena such as cyclones. In plasma physics applications,
monopolar and dipolar drift vortices (modons) [49] are often described as the coherent structures that
serve as the fundamental constituents comprising strong drift-wave turbulence. Plasma modons have
been used extensively to develop an understanding of magnetized [33] and electrostatic [70] plasmas.

Here we use a modon solution for (2.1)–(2.3) as developed in [49]. The basic features of the solution
are such that in the vanishing diffusion/viscosity limit the plasma density becomes a linear function
of the electrostatic potential n(φ), characterized by,

n = (λ/c)(φ− cx),

where λ and c are parameters.

The potential φ is a composite C2(Ω) function (see figure 6), that takes the form

φ(r, θ) =

{
AK1(κr/a) cos θ for r > a

(Br/a) cos θ + CJ1(γr/a) cos θ for r ≤ a
(6.1)
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Figure 6: Here we show the C2(Ω) function φ and its derivatives as a function of r. In dashed blue is
φ, dotted magenta is φ′ = ∂rφ, and solid yellow is φ′′ = ∂rrφ.

Figure 7: On the top left the electrostatic potential α1 = φ of the modon solution and the top right
the modulus of its gradient σ1 = |∇⊥U |, shown after the initial interpolation. The bottom left is a
closeup of the mesh along the halo r = a for σ1, and the bottom right is a closer zoom-in showing the
presence of Gibbs phenomena.

where J1 and K1 are Bessel functions of the first and second kind, respectively, r =
√
x2 + y2,

κ = a
√
λβ/c, A = ca/K1(κ), B = ca(1+κ2/γ2), C = (κ2ca)/(γ2J1(γ), and γ is determined by solving
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Figure 8: The electrostatic potential φ of the modon solution, shown at t = 0, 0.16, 0.45, 0.97. The
artificial diffusion parameters for the potential field φ are S0 = 77 and κ = 80.

the roots of
K2(κ)

κK1(κ)
= − J2(γ)

γJ1(γ)
.

The modon solution here poses a challenging numerical problem, as somewhat analogous to [29], the
composite function that comprises the potential, plasma density, and vorticity, does not demonstrate
enough regularity to smoothly project/interpolate into the expected solution space. Namely here, the
continuity equation provides that ∂tφ = c∂yφ, so that the momentum equation is characterized by
third order time-independent spatial differential operators. However, φ ∈ C2 prescribes no higher
order continuity in the field by construction. The initial state of the system must be constructed first
from computing the Laplacian of φ to recover the vorticity. This means that ∇⊥U , which drives the
convective transport in the flux, demonstrates a discontinuity in the initial state (e.g. the third spatial
derivative of a C2 function) that not surprisingly generates numerical Gibb’s oscillations in the initial
data that can be seen to high spatial refinement (see again figure 6, where the interpolation is shown
in figure 7 for p = 4 and h = 1.52× 10−5).

Normally such solutions pose substantial problems for DG solution systems, as given an unstable
initial state, the high order accuracy/basis of DG schemes tend to amplify singular irregularities, as
they comprise inherent features of the mathematical formulation that drive the system. However, it
is also the case that physical models of composite systems are often formulated to obey Cj continuity
for j smaller than expected as a formal necessity of developing meaningful predictive models. That
is, many of the discontinuities that present themselves in these formulations are “nonphysical” in that
they are but artifacts of the system numerics that do not emerge as compelling physical features in
the validation of the laboratory experiments.

As such, the artificial diffusion from section 5 serves as a panacea of sorts for coupling to systems
characterized by these particular types of mathematical pliability. The modon is a perfect example
of such a case. Here, with the addition of a weak and locally sharp (or confined) artificial diffu-
sion/viscosity, a stable solution is obtained indefinitely in (0, T ]. The results are shown in figure 8.
The problem is run with periodic boundaries in y, radiation boundaries in x, and the strong form of
the numerical fluxes are used. Notice here that the modon itself is not a periodic solution, as the
electrostatic potential distorts the electric field once the leading edge is close enough to the periodic
boundary to impact the tail of the solution from the other side (i.e. this modon solution “runs into
itself”). Also note that up to t = 0.1185 the average modon velocity is 1.0015± 0.0174, such that the
modon has traveled ∼12 of the domain (this is slightly before the second snapshot in figure 8), which
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is larger than the characteristic modon height and right before the leading edges of φ pass across the
periodic boundary; hence matching the analytic solution c until this point, as expected. After the
leading edge passes across the boundary and thereafter, for example at T = 0.7267, the speed averages
to 0.8531±0.0405 as the effects from the non-periodicity (self-interaction) cause a persistent slowdown.
The parameters in these runs were, Ω = [0, 1]2, β = a = c = 10λ = 1.

The most remarkable feature of the solution adjoined to the artificial diffusion/viscosity is the
effect on the instantaneous wavespeed. The initial interpolation of the base fields into the basis leads
to an approximate computed local maximum wavespeed of 1.4 × 104 (this is of course due to the
discontinuity in U across edges). The CFL restriction on the explicit timestepper is clearly restrictive
in this setting. However, with the modest artificial diffusion field notated in figure 8, we are able to
run the variable timestepper with the CFL constraint one hundreds times smaller than prescribed, and
still visually maintains a stable solution unpolluted with trace oscillations. This is appealing behavior,
and in contrast to a pseudospectral solution behavior in a discontinuous setting for example, where the
oscillations caused by Gibbs phenomena may become so remarkably stable (e.g. “resonant” in periodic
domains) that oscillations in the residual become indistinguishable from the physics.

6.2 Turbulence

In physical turbulence observed near the SOL edge in tokamaks [5, 50], the parallel loss terms α
can have extremely important affects on the dynamics. In addition the form of the system with β
a linear function of n, though frequently convenient and of use in physical studies [26], can suppress
nonlinearities due to the toroidal curvature. However, when β scales as a constant we can rescale the
system to a stable formulation that demonstrates no difficulties with the vacuum.

To do this, define a new variable χ such that n = eχ. Multiplying the continuity equation by n−1,
(2.1)-(2.2) can be rewritten as

∂tχ+ [φ, χ] = −α0 +D∇2
⊥χ+D(∇⊥χ)2, χ|t=0 = n0, χ = χb on ∂Ω, (6.2)

∂tU + [φ,U ] = αφ− β[x, χ] + µ∇2
⊥U, U |t=0 = U0, U = Ub on ∂Ω. (6.3)

This can easily be recast into the weak form, with O = ∇⊥χ. The only major difference here is the
second diffusion term D(∇⊥χ)2, which in the weak form can be treated simply as the interior term
Dζ1O2.

In this form we have confirmed the qualitative dynamics of the system discussed in detail in [5, 50],
where we have shown that the turbulent blobs conform to the inertial length scale. That is, taking
the initial condition above with β/α0 = 5, and setting α0 = 10−4 we confirm the inertial length scale
of (β/α2)1/5, which is ∼8.7.

We also test the e-folding length λ of this system at turbulent saturation as discussed in [5,
50]. These simulations were run with the same settings as above, but here we set p = 3 on 1024
finite elements. Frequently e-folding simulations are run on small domains with absorbing boundary
conditions, but to avoid the potential first order boundary error that can arise in dispersive systems
(see [43, 53, 54, 74] for more details on this) we instead implement the same problem on a periodic
domain (x, y) ∈ [0, 1600] × [0, 377], where a y-independent plasma source η(α0) = 3α0e

−(x−75)2/200 is
added to the right hand side of (6.2). The resulting system is run until T = 50, 000 where saturation
conditions are plainly evident.

As we can see at time ∼38,000 in figure 10, the χ and n fields show substantial small-scale turbulent
features. To validate and benchmark these results, the e-folding length λ is determined by solving a
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Figure 9: The center of mass and center of mass velocity plots on the right show single blob validation
against BOUT++ [50] and Garcia [26] et al. To the left is a turbulent saturation test at T ∼38,000,
where the top graph shows the density n, the middle graph shows the density field with φ contours
overlaid, and the bottom its associated χ field.

least squares fit of L−1
y

∫
y ndy = e−x/λ for λ, where Ly = 377, and the Rayleigh number Ra = 10−4.

These results are compared to an exact simulation of BOUT++ [50] to find an nearly exact e-folding
length of λ = 43 between the two codes.
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Figure 10: Here we show the equivalent slope and the prediction bound overlap between BOUT++
and ArcOn at turbulent saturation relative to the e-folding length.

§7 Conclusion

We have presented a new architecture called ArcOn for studying the dynamics of filamentary blobs
transported through the scrape-off layer of tokamaks. In this regard we have implemented a fully
discontinuous Galerkin method for solving (2.1)-(2.3). In contrast to mixed form finite element meth-
ods, for example, which use continuous Galerkin projections [53] to recover solutions to Poisson, our
present approach preserves the discontinuous function spaces throughout the computation, thus ex-
panding the well-posedness of the space of admissible solutions. Our formulation is novel, in that
is supports multiples basis functions, and is run using modal, nodal, or mixed nodal/modal finite
elements. In addition, we have developed and analyzed three classes of upwinding schemes, which
we discern here as the strong, semistrong, and quasistrong flux formulations developed to handle the
particular cross-product driven fluxes that arise in (2.1)-(2.2). We further implement a Poisson solver
using a unified implementation that supports, SIPG, NIPG, IIPG, LDG, Brezzi, and Bassi-Rebay
fluxes. Future work in this direction include adding functionality to support LDG, LDG2, HDG and
Baumann-Oden formulations [9], as well as developing a strongly coupled Riemann solver for the
bracketed convective fluxes.

We have carried out a program of thorough numerical verification of the code, which is seen to
converge to the prescribed order in each of its respective subsystems, providing numerically smooth
initial data. We then discussed some of the regularization aspects of DG methods that render them
remarkably flexible. Along these lines we have developed a novel artificial diffusion/viscosity algorithm
predicated on a heuristic entropy measure of the relative local variation in the base variable. This
regularity sensor Sij is shown in a number of examples to produce robust solutions.

We have validated ArcOn on a collection of physical test cases. The evolution of modon solutions
to (2.1)-(2.3), which introducd a number of numerical difficulties (singular behavior in the initial state
of the system) are easily managed with modest εi. ArcOn was then validated against blob dynamics
and benchmarked against BOUT++ [24] and Garcia [26] et al. Finally turbulent saturation behavior
was benchmarked against BOUT++ [24]. The direction of future work in these areas include the
expansion of the physics in our model to include advanced turbulent features of the flow, such as the
effects of electron temperature gradients and magnetic chaos.
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